
Some primary musings on uncertainty and sensitivity

analysis for dynamic computer codes

John Paul Gosling

Note that this document will only make sense (maybe) if the reader

is familiar with the terminology used in Conti et al. (2007).

1 Uncertainty and sensitivity analysis for com-

plex computer codes

Uncertainty analysis (UA) is the quantification of uncertainty about the output

of some computer code or simulator given that the inputs to that computer code

are unknown. Uncertainty analysis can be posed as the following question: if, for

some simulator represented by a function f(.), the true input X is unknown and

has distribution G(X), what is the distribution of Y = f(X)?

Sensitivity analysis (SA) is concerned with investigating how an output of a

simulator responds to changes in the simulator’s inputs. In (global) sensitivity

analysis, the interest is in quantifying the effect on an output of varying an input

parameter over some range. If there is uncertainty regarding the values of various

input parameters in the simulator, a sensitivity analysis would consider the con-

tribution of individual uncertain inputs (or groups of inputs) to the uncertainty

in the outputs.

An extensive overview of traditional approaches to UA and SA can be found in

Saltelli et al. (2000). These traditional techniques can become computationally

expensive if the simulator takes more than a few seconds to run. Emulation

techniques have been developed that can efficiently perform both uncertainty and

sensitivity analyses; these methods are detailed in Oakley and O’Hagan (2002)

and Oakley and O’Hagan (2004). The rest of this report questions how far we

1

can take the emulation of dynamic simulators as given in Conti et al. (2007) in

terms of achieving results similar to what is possible with standard emulation

techniques.

2 UA for dynamic computer codes

Many simulators are dynamic: they model a system that is evolving over time

and operate iteratively over fixed time steps. A single run of such a simulator

generally consists of a simulation over many time steps, and we can think of it in

terms of a simpler, single-step simulator being run iteratively many times. The

single-step simulator requires the current value of a state vector as an input, and

the updated value of the state vector becomes an output. It may have other

inputs that in the context of a many-step run of the simulator can be classified

as model-parameters and forcing inputs. Model-parameters have fixed values for

all the time steps of a simulator run, and so they have the same values for each

cycle of the single-step simulator. They describe either fundamental parameters

of the mathematical model or enduring characteristics of the specific system being

simulated by that run. Forcing inputs vary from one time step to the next and

represent external influences on the system.

We are typically interested in the uncertainty in the simulator outputs due

to our uncertainty in its inputs. To demonstrate this for a rainfall-runoff model,

which is represented diagrammatically in Figure 1, we now say that we are un-

certain about the initial values of the three state variables (hs(0), hgw(0) and

hr(0)) and three of the most influential model-parameters (x1, x2 and x3 say).

The following distributions were given to the uncertain inputs:

hs(0) ∼ N(0.4, 0.01), hgw(0) ∼ N(7.5, 1), hs(0) ∼ N(0.145, 0.0005),

x1 ∼ N(1.5, 0.4), x2 ∼ N(2, 0.36), x3 ∼ N(6.5, 0.36).

2

Soil
 hs

Ground
 water
 hgw

River
 hr

Figure 1: A simple three-compartment rainfall-runoff simulator (the arrows show
the flow of water through the system).

A simple uncertainty analysis can be performed through a Monte Carlo scheme:

first, we draw from the input distributions, then we apply the approximation

conditional on the drawn values and we repeat these two steps many times.

We are interested in the value of the state variables after 25 time-steps. In

order to emulate the single-step function well, we required 200 single-step train-

ing runs. We also carried out a uncertainty analysis using standard emulation

techniques where 50 training runs were required to produce comparable emula-

tor accuracy. Note that the 50 training runs in the standard emulation case are

equivalent to 1250 single-step training runs. The results are given in Table 1 and

Figures 2, 3 and 6 (the figures plot the posterior mean and 4 standard deviation

range for time points 20 to 25 and the final range is the result of the standard

emulation). It can be seen that the two approaches yield similar results and that

the approximation to the dynamic emulator uses a fraction of the training runs.

However, in order to obtain these results, we used a simple Monte Carlo scheme.

For a small set of 200 single-step training runs, it requires a lot of computational

3

Standard emulation Approximation
Mean Variance Mean Variance

hs(25) 121.62 5.57 121.91 5.93
hgw(25) 7.40 1.01 7.50 1.00
hr(25) 0.91 0.01 0.91 0.01

Number of single-step
evaluations 1250 200

Table 1: Uncertainty analysis results for the rainfall-runoff simulator.

effort to get accurate results.

In this Monte Carlo scheme, the type of estimates that we produce are of

interest. The approximation to the exact simulation approach gives us the fol-

lowing:

Ef(.) (Yt|X) and V arf(.) (Yt|X) . (1)

When we employ a Monte Carlo scheme to this with respect to the inputs X, we

can get approximations of the following:

EX

[

Ef(.) (Yt|X)
]

, (2)

V arX

[

Ef(.) (Yt|X)
]

, (3)

EX

[

V arf(.) (Yt|X)
]

. (4)

The means reported in Table 1 are calculated using (2). The variances are cal-

culated by combining (3) and (4) by using the law of total variance:

V arA(A) = EB [V arA (A|B)] + V arB [EA (A|B)] .

We can compare these to the expectations and variances we get out of UA using

4

20 21 22 23 24 25

t

100

105

110

115

120

125

h_
s

Figure 2: UA results for hs.

20 21 22 23 24 25

t

4

5

6

7

8

9

h_
gw

Figure 3: UA results for hgw.

5

20 21 22 23 24 25

t

0.0

0.4

0.8

1.2

h_
r

Figure 4: UA results for hr.

standard emulation techniques:

Ef(.) [EX (Yt|X)] , (5)

V arf(.) [EX (Yt|X)] , (6)

Ef(.) [V arX (Yt|X)] . (7)

You will notice f(.) and X have swapped roles in equations (5) to (7). However,

it is easy to see that

V arX

[

Ef(.) (Yt|X)
]

+ EX

[

V arf(.) (Yt|X)
]

= V arf(.) [EX (Yt|X)] + Ef(.) [V arX (Yt|X)] , (8)

using the law of total variance. The nice thing about (6) is that it can be in-

terpreted as the portion of uncertainty due to the lack of knowledge about f(.);

6

that is, uncertainty in the emulation process. Similarly, (7) can be viewed as the

portion uncertainty due to the lack of knowledge about the inputs.

One extremely crude way to estimate (6) and (7) could be to use the following:

V arf(.) [EX (Yt|X)] ≈ V arf(.) [Yt|X
∗] , (9)

where X∗ is the mode of our distribution for X. We could plug the approximation

into (8) to get a value for Ef(.) [V arX (Yt|X)]. I cannot stress how wrong it would

be to do this (as a matter of fact, Gosling (2006) spends several pages showing

why you should not use this approach); however, I included this thought to stress

how much we want to get at expressions like (6) and (7).

We would like to have analytical expressions for equations (5) to (7), which

could be calculated without the computational effort of Monte Carlo, for all

time-steps under consideration. This is infeasible for all but the simplest input

distributions when using standard emulation techniques. To circumnavigate this,

the Monte Carlo scheme can be reversed: first, we draw a complete single-step

function then draw thousands of possible input configurations and use the drawn

function to obtain Monte Carlo estimates of the required quantities. However, in

order to do this, the single-step function must be emulated to a high degree of

accuracy over all possible input configurations (not just the initial value ranges).

This may make this approach too expensive for all but the most well-behaved

functions.

A sizeable challenge in the uncertainty analysis of complex computer models

is accounting for uncertainty in the forcing inputs. In the rainfall-runoff model,

there are two forcing inputs being specified at each time, rainfall and evapotran-

spiration potential (PET). If we look at the evolution of the state parameters

over a year, we need to consider our beliefs about 730 forcing inputs. However,

it is clear in Figure 5 that there is probably strong correlation between the two

forcing inputs in the example and possible autocorrelation. If we could fit some

7

0 5 10 15 20 25 30

t

0

10

20

30

40

R
ai

n

3.6

4.0

4.4

4.8

P
E

T

Figure 5: Forcing inputs over 30 time-steps; the red triangles are PET and the
blue circles are rainfall.

sort of time series model to our beliefs about the forcing inputs, we could make

conditional draws from that distribution at each step of our Monte Carlo scheme.

Another model that is available to MUCM is a dynamic vegetation model.

This model has a forcing input called degree days that are very important for

the output of the model. Over a certain period of the year, the model stores up

the number of days that cross a certain temperature threshold. Once it reaches

a certain point, a process inside the model switches on and the value of that

forcing input is then ignored (until the next year). I’ve seen many inputs like

this in models; it is not clear how we can model them. It may be the case that

this set of forcing inputs are directly related to a few model-parameters and can

be ignored; only the model builders can tell us.

8

3 SA for dynamic computer codes

What are we really interested in: the behaviour of the single-step function or the

behaviour of the simulator over multiple time-steps? A sensitivity analysis of the

single-step function will tell you a lot about how the state variables will evolve

from one time point to the next. This could be done using standard SA results

given in Oakley and O’Hagan (2004). However, drawing from my own experience

with this type of model, I believe that the value of the state variables will be

of paramount importance in determining their value at the next time-step. In

addition to this, I believe that the single-step function maps y to ≈ y. A SA of

the single-step function could reveal a lot about the impact of the forcing and

model parameters.

If we consider the sensitivity of an output to the function inputs for a partic-

ular t, then we can just use the results of Oakley and O’Hagan (2004). However,

we would like to avoid separate emulation for every t — this is the whole point

of Conti et al. (2007). An analytical formulation of sensitivity measures would

be ideal, and, if UA can be performed analytically, there will be scope for doing

this. In calculating sensitivity measures for each t, we could answer important

questions about the simulator. For instance, we could measure how many steps

it takes for the simulator to forget the initial values of the state variables; it

is often assumed in practice that the initial values are forgotten if you run the

simulator over enough time steps. Figure 6 shows hr, from the aforementioned

rainfall-runoff model, evolve over 25 time-steps from five different starting values.

Most of the sensitivity measures in Oakley and O’Hagan (2004) are made

possible by the input parameters being independent. It might be possible to

construct an independent parameterisation for the model-parameters and the

initial state variables; however, it is not clear how this could be achieved for

forcing inputs with their complex correlation structure. We may need to drop

the independence assumption and develop sensitivity measures that can cope

9

0 5 10 15 20 25
t

0.0

0.5

1.0

1.5

2.0

h_r

Figure 6: hr evolving over 25 time-steps from 5 different starting points.

with highly structured input distributions.

4 To be developed

Here is all the previous pages’ content put in bullet form to give a checklist of

interesting questions.

• Can we avoid Monte Carlo when performing UA?

• Do we need to use the approximation to the exact simulation approach

when performing UA?

• Forcing inputs require more than independent distributions; how can we

model them in a sensible manner?

• SA for single-step functions is just applying known probabilistic SA tech-

niques. Can we derive similar measures for dynamic simulators?

10

• What does variance decomposition mean when the input parameters are

related in a potentially complex way?

• Can we combine our UA approach with calibration and data assimilation

to create a sophisticated model for the model-reality discrepancy?

The final point here is potentially the biggest advance that emulation of dy-

namic simulators will provide. We could break down the problem of model dis-

crepancy into single-step discrepancies where judgements might be more easily

made and data could be used to inform this process on a step-by-step basis.

References

Conti, S., Gosling, J., Oakley, J., and O’Hagan, A. (2007). “Gaussian process
emulation of dynamic computer codes.” Technical report, Department of Prob-
ability and Statistics, The University of Sheffield.

Gosling, J. (2006). “Differences between estimates of expected computer code out-
put with GEM-SA.” Technical report, Department of Probability and Statis-
tics, The University of Sheffield.

Oakley, J. and O’Hagan, A. (2002). “Bayesian inference for the uncertainty
distribution of computer model outputs.” Biometrika, 89: 769–784.

— (2004). “Probabilistic sensitivity analysis of complex models: a Bayesian
approach.” J. R. Statist. Soc. Ser. B , 66: 751–769.

Saltelli, A., Chan, K., and Scott, E. (eds.) (2000). Sensitivity Analysis . New
York: Wiley.

11

