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Abstract

In areas such as kernel smoothing and non-parametric regression there is emphasis

on smooth interpolation and smooth statistical models. Here we concentrate on

pure interpolation. Splines are known to have optimal smoothness properties in one

and higher dimensions. It is shown that smooth polynomial interpolators can be

constructed by first extending the monomial (polynomial) basis and then minimising

a measure of roughness with respect to the free parameters in the extended basis.

Algebraic methods are a help in choosing the extended basis, which can also be

found as a saturated basis for an extended experimental design with dummy design

points. One can get arbitrarily close to optimal smoothing for any dimension and

over an arbitrary region, giving simple alternative models of spline type. Examples

show that the interpolators do relatively well and tend to be better than kriging-type

methods for small sample size. The tractability of their polynomial forms points to

fruitful areas of research.
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1 Introduction

There is a considerable literature on smooth interpolation and its statistical

counterpart, for example in non-parametric regression. The optimal smooth-

ness properties of splines have a substantial literature. The main optimality

result for one dimension is attributed to Holladay [1957] and for two dimen-

sions, where thin-plate splines are optimal, to Duchon [1976]; see Kimeldorf

and Wahba [1970] and Micula [2002] for reviews of spline optimality.

In computer experiments, Bayesian kriging using Gaussian kernel stochastic

process models has been preferred to splines, Sacks et al. [1989], Kennedy

and O’Hagan [2001], and have also become popular in machine learning, see

Rasmussen and Williams [2005]. Of course, the connection between kriging

and splines is thoroughly researched and, for example, splines can arise as

kriging (conditional expectation) interpolators for special Gaussian stochastic

processes, see Kimeldorf and Wahba [1970].

Raw polynomial interpolation is known in general not to have optimal rates

of interpolation unless special sampling (design) points are used such as in

Tchebychev approximation. On the other hand the existence of polynomial

interpolators over an arbitrary design is at the core of the newer theory of

“algebraic statistics”: for any arbitrary design in d dimensions there is always

a monomial basis out of which we can build a polynomial interpolator. This

was introduced into statistics by Pistone and Wynn [1996], covered at length

in the monograph Pistone et al. [2001] and was also the basis for Bates et al.

[2003] which can be seen as the forerunner of the present paper.

The basic idea of this paper may seem at first to be somewhat contradictory.
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We start with a given polynomial interpolator and by extending the basis make

the interpolator smoother. Although one may naturally associate higher order

polynomial terms with lack of smoothness, we can, in fact, extend the basis

and use the freedom this gives to increase smoothness. It should be pointed

out that the use of polynomials to build kernels with pre-specified properties

is familiar in signal processing, see Lin et al. [2004]. The algebra method is

simply of as assistance in extending the basis.

1.1 An introductory example

The Lagrange interpolator of the three points (x, y) = (0, 1), (1
2
, 3), (1, 2) is

the quadratic:

y(x) = 1 + 7x− 6x2.

The (average) roughness of y(x) over [0, 1] is, according to the criteria we shall

use in the paper,

Ψ2 =
∫ 1

0

(

d2y(x)

dx2

)2

dt = 144.

Now, consider a quartic interpolator which interpolates the same points but

also two additional points (2, s), (3, t). We may call s, t “dummy” values. The

quartic interpolator is a function of (s, t) and so, therefore, is the roughness Ψ2.

In fact, Ψ2 a is quadratic function of (s, t) and we may minimise it precisely.

The minimal value is 768
7

= 109.714 < 144, which is achieved at (s, t) =

(117
7
, 1276

7
). This gives the following quartic interpolator which is smoother

than y(x):

ỹ(x) = 1 +
39

7
x+

8

7
x2 −

80

7
x3 +

40

7
x4.

We note that if we replace the extra points x = 2, 3 by any other points

(distinct from {0, 1/2, 1}) we obtain the same interpolator. This is because it
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is the extension of the basis, which is important. We shall see that for larger

problems we obtain very substantial increases in smoothness by increasing the

basis.

1.2 Monomial bases and extended bases

Recent work in the area of algebraic statistics shows how to construct es-

timable (identifiable) monomial bases for polynomial regression and we start

with a very short description. The point is that we shall need an extended

basis with certain conditions and the algebra is one way of achieving this.

We start with a set of factors x = (x1, . . . , xd). For a set of nonnegative integers

α = (α1, . . . , αd), a monomial, such as x2
1x2, is written xα = xα1

1 · · ·xαd

d , and

a polynomial is a linear combination of monomials. A design Dn is a set of n

distinct points in d dimensions, Dn = {x(1), . . . , x(n)}, x(i) ∈ R
d, i = 1, . . . , n.

This rather general definition of a design is familiar in computer experiments

and spatial sampling, where good designs tend to fill up the input space.

The algebraic methods give us the following: given an experimental design,Dn,

it is always possible to find a saturated non-singular monomial basis BL =

{xα, α ∈ L}. Thus, the size of the basis is equal to the size of the design

|L| = |Dn| = n and the n× n X-matrix, from the saturated regression model

X = {xα}x∈Dn,α∈L is non-singular. We call such a basis a good saturated basis

for the design. The intuition behind algebraic methods is simple: terms are

included in the good saturated basis according to a term ordering and a rank

inclusion criterion. For details on term orderings see Cox et al. [1997], and for

description of the algebraic technology see Pistone et al. [2001].
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Example 1 Let D24 to be the first 24 points of a bidimensional Sobol’s space

filling sequence. Sobol’ sequence is a (multivariate) binary sequence, bitwise

constructed with the aid of special binary generators called “direction num-

bers”. We do not pursue here a detailed explanation of the construction of

Sobol’ sequence, but rather point to the description of it by Bratley and

Fox [1988]. This sequence has been implemented in the R language package

fOptions through the function runif.sobol, see Ihaka and Gentleman [1996].

By selecting terms with a degree lexicographic term order x1 ≻ x2, a good

saturated basis with 24 monomials is identified for D24. This model includes

the monomials x6
2, x1x

5
2, x

2
1x

4
2 plus all the terms of a model of total degree five.

This basis will be extended in the example of Section 3.3.

It will be critical in our development that we may extend a basis. By this we

mean we keep the design Dn fixed but take a larger set of N > n monomials,

hence the term “supersaturated” in the title of the paper. But we require a

condition contained in the following definition.

Definition 1 (1) A finite set of monomials B is called a hierarchical basis

if for any monomial xα in B then all its divisors are in B.

(2) Given a design Dn, with sample size n, a good supersaturated basis is

a basis BM = {xα, α ∈ M} with |B| = N > n such that there is a

hierarchical non-singular sub-basis of size n.

Here is an example to show that we have to be a little careful. Let us start

with a rather poor design in two dimensions: D4 = {(0, 0), (1, 1), (2, 2), (3, 3)}.

Then, it is straightforward to see that there are only two good saturated model

bases {1, x1, x
2
1, x

3
1} or {1, x2, x

2
2, x

3
2}. From this we can see that the extended

basis {1, x1, x
2
1, x2, x

2
2} with five terms is not useful as there is no good sub-
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basis of size four.

If we start with a non-singular hierarchical basis for a design Dn and extend

it, in any way, then we always obtain a good supersaturated basis. But there

is a revealing way of generating a good supersaturated basis and that is by

extending the design Dn to a design DN with N points and finding a good sat-

urated basis for the larger design, which contains the good basis for Dn. The

algebra shows that this is always possible. This leads to a second, and equiv-

alent, way of producing the smooth models which will be called the “dummy

design” method, covered in sub-section 2.2. This is the method we used in the

introductory example.

2 Smooth interpolators

Let the experimental design be Dn and y1, . . . , yn be real values (observations)

taken at the design points x(i) ∈ Dn, i = 1, . . . , n, respectively. Let BM be a

good supersaturated basis for the design Dn and let y(x) =
∑

α∈M θαx
α be a

polynomial model in that basis. A good supersaturated model will be sought

using a measure of roughness.

In one dimension (d = 1) we shall adopt the following measure of roughness

based on the second derivative

Ψ2 =
∫

X

|y′′(x)|2dx, (1)

where the integration is carried out in a desired region X ⊂ R. For higher

dimensions the Hessian is

H(y(x)) =

{

∂2y(x)

∂xi∂xj

}

,
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and we have

∑

ij

(

∂2y(x)

∂xi∂xj

)2

= ||H(y(x))||2 = trace
(

H(y(x))2
)

. (2)

Then define

Ψ2 =
∫

X

||H(y(x))||2dx, (3)

for some desired region X ⊂ R
d.

Smooth here means “having minimal roughness”, so that a smooth interpo-

lator is ŷ(x) =
∑

α∈M θ̂αx
α, where the coefficients θ̂α are selected to minimise

roughness subject to the interpolation condition, i.e. solving the constrained

optimisation problem

min
θ

Ψ2(y(x)) subject to yi = ŷ(x(i)), i = 1, . . . , n (4)

In the next subsection we give the solution of this constrained problem and in

the second subsection the dummy design method, which is equivalent.

2.1 The constrained problem

The main technical difficulty arises from the fact that linear parts of the

model make no difference to the criterion Ψ2 but do affect the interpolation.

It is necessary to partition the X-matrix to take account of this.

Let f(x) and θ respectively be the vectors which hold the good supersaturated

basis and the parameters so that we can write (1) as y(x) = θT f(x). Denote

f (ij) = ∂2f(x)
∂xi∂xj

and define

K =
∫

X





k
∑

i,j=1

f (ij)f (ij)T



 dx. (5)
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Then we see that

Ψ2(y(x)) = θTKθ. (6)

The technical difficulty mentioned above arises from the fact that K may not

be full rank. In particular the constant and any linear term in the models basis

will give zero entries. Call these entries structural zeros. Permute the rows and

columns of K so that the structural zeros are adjacent:

K =

















0 0

0 K̃

















(7)

Let X = [X0, X1], f = (fT
0 : fT

1 )
T and θ = (θT0 : θT1 )

T be the corresponding

rearranged and partitioned versions of Xn, f and θ, respectively. The matrix

X has n rows and as many columns as terms in f . Let y be the column vector

with n observations and note that Ψ2 = θT1 K̃θ1.

With this partitioning the constrained quadratic problem (5) is:

min
θ

θT1 K̃θ1 subject to X0θ0 +X1θ1 = y (8)

Let 2λ be an n × 1 vector of Lagrange multipliers (2 is for convenience) so

that the Lagrangian is

θT1 K̃θ1 − 2λ(X0θ0 +X1θ1).

After differentiation the full set of equations for θ0, θ1 and λ can be written in
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block form




























X0 X1 0

0 K̃ −XT
1

0 0 XT
0

























































θ0

θ1

λ





























=





























y

0

0





























(9)

If the matrix on the left hand side of Equation (9) is nonsingular we obtain a

unique solution θ̂0, θ̂1, λ̂. The following three conditions are together sufficient

for this.

(i) The full basis is a good supersaturated basis for Dn, so that X is full rank.

(ii) X0 is full rank.

(iii) K̃ is full rank and thus invertible.

The full matrix inverse with solutions θ̂0, θ̂1, λ̂ are given in Appendix 1. Finally,

using these results, we express the smooth estimator as

ŷ(x) = θ̂0f0 + θ̂1f1 = θ̂f(x)

and the optimal Ψ2 as

Ψ∗

2 = θ̂T1 K̃θ̂1.

In applications, as is common with quadratic programming, we simply invert

the matrix on the right hand side of (9) using a fast numerical method. Thus,

given the design Dn, the good supersaturated basis and K̃, the method is

fairly straightforward to implement.

It is revealing to consider the case where K is nonsingular. Then we do not
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need the partition of Equation (7) and instead can write Equation (9) as

















X 0

K̃ −X

































θ

λ

















=

















y

0

















,

which has the solution:

θ̂ = (XTX +K(I − P )K)−1XTy

where P = XT (XXT )−1X is the projector onto the row space of X . Thus,

although XTX is not invertible, because we have a supersaturated model, the

second term K(I − P )K on the left hand side can be seen as a smoothness

induced regularisation of the problem which compensates for this singularity.

2.2 The dummy design method

For simplicity of development we assume that K is non-singular in the present

case. Let DN be a large design, with N > n distinct points, which contains

the original design Dn and write

DN = Dn ∪Dq,

where q = N − n. Let h(x) be a good saturated basis for Dn, and let f(x)

be an (extended) good saturated basis for DN , f(x) = (h(x)T , g(x)T )T . Also

extend the observation vector to z = (yT , zT )T where, as before y holds the

“true” observations taken at points in Dn, and z can be thought of as dummy

observations on the design Dq, as in the introductory example. The extended

model is written

y(x) = f(x)T θ = hT (x)β + gT (x)γ (10)
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and we assume, as in the last section, that y(x) interpolates the observations

y over Dn.

We now minimize Ψ2 over the the choice of dummy observations z which is

now an unconstrained optimization problem, but with a reduced set of free

parameters, namely z. This is the procedure we used in the introductory ex-

ample. The constrained optimization (8) and this unconstrained optimization

(11) are equivalent in the case that the full basis is good for the full design,

DN . This is because of the one-to-one correspondence between observations

and parameters and the fact that the interpolation constraint is the same in

both cases.

The unconstrained problem is:

min
z

(yT : zT )X−1
N

T
KX−1

N

(

y

z

)

. (11)

WhereXN is theX-matrix for the full large model f(x). First, let the following

matrix be partitioned according to the model bases f(x) = (h(x)T , g(x)T )T :

A = X−1
N

T
KX−1

N =

















A11 A12

A21 A22

















.

Then after expanding (11) and differentiating, the optimal z is ẑ = −A−1
22 A21y

and the minimum roughness value is Ψ∗
2 = yTQ y, whereQ = A11−A12A

−1
22 A21.

The smooth interpolator is

ŷ(x) = fT (x)X−1
N

(

y

ẑ

)

= fT (x)X−1
N

(

I

−A−1

22
A21

)

y = fT (x)K−1(X11 : X12)Qy

(12)
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where

XN =

















X11 X12

X21 X22

















is the appropriate partitioning of XN , i.e. the rows of XN are indexed by Dn

and Dq, while the columns are indexed by h(x) and g(x).

Both the last equality and the equivalence to the solution in Subsection 2.1 is

shown for the case that K is non-singular. The equivalence in general holds

under conditions (i), (ii) and (iii) in that section. We note, as for the intro-

ductory example, that the solution does do not depend on the dummy design

Dq, except in so far as it is involved in guaranteeing that we have a good

supersaturated basis.

2.3 Towards splines

We make the claim that as the supersaturated model order increases we get

closer to the most smooth interpolating function. For our criteria it is well

known, see references in the introduction, that cubic splines are optimal in

one dimension, thin-plate splines in two dimensions and their generalisations in

higher dimensions. However, the known analytic results are where the region of

integration X has a standard shape (eg hyper-rectangle, ball etc) and typically

contains the knots. On the other hand, except for numerical stability and

our sufficient conditions, our methods apply to any X . Although we do not

present a proof of the convergence to splines the intuitive explanation is that

as the model order increases and the bases are suitably nested the optimal Ψ2

decreases monotonically as the size of the model basis increases. Thus the Ψ2
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will converge to a minimum. We then need to show point-wise convergence of

the interpolators, to a limiting function.

Additionally, an interesting comparison could be performed between our meth-

ods and recent literature results which smooth over irregular bivariate regions,

see Ramsay [2002] and Wood et al. [2008].

3 Examples

3.1 A one dimensional example: spline-like behavior

In this example, smooth saturated models are used for interpolating a known

univariate function. The function considered is the sine cardinal m(x) =

sinc(ax + b) with a = 15π/2 and b = −10π/2. The region over which the

interpolators will be smoothed is X = [0, 1].

Suppose that the design D6 is a uniform design (evenly spaced) in [0, 1],

and that the response vector y contains the values of m(x) at points in D6.

The choice of a good saturated and supersaturated models can be driven

by algebraic methods. For the present case, an obvious candidate is h(x) =

(1, x, . . . , x5)T . Call ŷ0 the interpolator fitted solely with h(x). Now a pro-

cess of smoothing is carried out by adding dummy points, one at a time.

While adding dummy points, h(x) remains unchanged. With only one dummy

point, a clear candidate for g(x) is g(x) = (x6), while for q dummy points,

g(x) = (x6, . . . , x6+q−1). Call ŷq the smooth interpolator obtained by adding q

dummy points, q = 1, . . . , 5. The value of roughness for ŷq quickly drops down

so that a similar roughness to that of a spline is achieved with ŷ4 (only four
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extra terms), see Table 1.

Model ŷ0 ŷ1 ŷ2 ŷ3 ŷ4 ŷ5 Spline

Ψ∗
2 76.543 74.698 33.153 33.020 27.767 27.745 26.744

Table 1

Convergence of Ψ∗
2 to spline for the univariate example of Section 3.1.

With a uniform design, the polynomial interpolator ŷ0 exhibits the undesired

oscillating feature called Runge phenomenon, see Trefethen and Weideman

[1991]. However, the smooth supersaturated models tended to remove the

oscillations. The progressive smoothing achieved with extra terms can be seen

in Figure 1 which shows the interpolator and smooth saturated models.

0.5 1

x

−0.5

−0.25

0.5

0

0.5

1

b b b b b b

Fig. 1. Sequence of smooth saturated models: ŷ0 is a polynomial of fifth degree (- -),

ŷ1, . . . , ŷ4 (—) are supersaturated models. True model m(x) (· · · ) and design points

are also shown.
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A comparison between the smooth supersaturated method and cubic splines,

which are optimally smooth, was carried out as follows. First, for a uniform

design Dn on [0, 1], a saturated model ŷ0 was fitted to the values of m(x) at

the design points. Call Ψ∗
2(0) the value of smoothness for ŷ0. Then, using extra

q basis terms, a smooth supersaturated model ŷq was fitted. Call Ψ∗
2(q) the

corresponding value of smoothness. Additionally, a cubic interpolating spline

was fitted to the same data and call Ψ∗
2(sp) its smoothness value. We observe

experimentally that values Ψ∗
2(0),Ψ

∗
2(1), . . . form a decreasing sequence which

converges surprisingly quick to Ψ∗
2(sp), see the discussion in subsection 2.3.

This behavior can be quantified by plotting the ratio
√

Ψ∗
2(q)/Ψ

∗
2(sp) against

the number of terms added to smooth the model. Figure 2 shows such com-

parison when Dn are uniform designs of size n = 5, 10, 15, 20. The line for

n = 20 is indistinguishable from R(q) = 1.

q

R(q)

0 2 4 6 8 10
1

2

3

4
5

10

Fig. 2. Logarithm of smoothness ratio R(q) =
√

Ψ∗
2(q)/Ψ

∗
2(sp) against number of

smoothing terms added q: sample sizes n = 5, 10, 15 (- -,· · · ,—).
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3.2 Smoothing and kriging: unidimensional comparison

An important feature of smooth supersaturated interpolators is that, even for

small sample sizes, an interpolator can be fitted to data. This feature can be

an advantage over other methods such as kriging, which requires a initial stage

of parameter estimation. If the sample size is small, and no prior information

for kriging parameters is available, then smooth supersaturated models can

be used as an alternative to kriging interpolators.

A comparison was performed between smooth supersaturated models and krig-

ing. The aim was to judge the performance of both interpolating systems to

produce good fits to data using extra validation points. The design region for

the study was [0, 1] and call Dn, n = 5, . . . , 17 a design of n points constructed

with the first n − 2 points of the standard univariate Sobol’ sequence imple-

mented in R, together with 0 and 1. The designs are nested, for example D6

can be obtained by adding the point 0.375 to D5 = {0, 1, 0.5, 0.75, 0.25}.

The following four univariate functions were used as true (but assumed un-

known) simulators: g1(x) = sinc(23x− 15.7); g2(x) = 1 + sin(13.9x); g3(x) =

sin(12x2) and g4(x) = (1 + sin(13.9x))u(x− 0.34) where u(x) is the Heaviside

step function. The selected functions were chosen to include features which are

difficult to model with polynomials. For instance, g2 is periodic; g1 features

damping oscillations; g3 has frequency that changes with variable x and g4 has

a flat region and a periodic region.

For each function g1, . . . , g4, training data was computed at the design points

Dn, and both smooth supersaturated model and kriging were fitted to the data.

The analysis was performed independently for every function. The smooth
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Design Simulator used

size n g1 g2 g3 g4

5 1.308 1.229 0.993 0.882

6 1.399 0.550 0.969 0.320

7 0.524 0.566 0.987 0.319

8 0.497 0.573 1.043 1.176

9 0.751 0.267 1.369 3.315

10 6.679 5.318 1.314 3.752

11 17.591 41.458 3.022 22.984

12 19.897 59.092 9.981 9.345

13 39.301 255.953 17.570 9.743

14 239.687 6431.865 41.209 25.047

15 479.360 5722.610 176.935 25.989

16 218.640 133.324 74.937 15.767

17 611.246 36.982 178.632 47.473

Table 2

Ratio RMSEkr/RMSEssm for the univariate study.

model was computed using nine smoothing terms, while the kriging model

used an exponential correlation function corr(Y (s), Y (t)) = exp(−θ|s − t|p),

with parameters θ, p carefully estimated by maximum likelihood, see Sacks

et al. [1989].
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Finally, a validation design was constructed taking 30 further points from

Sobol’s sequence. Empirical root mean square error (RMSE) was computed

using the models fitted and the true function. The comparison is made using

the ratio of RMSE value for kriging against that for smooth supersaturated

models RMSEkr/RMSEssm, which is shown in Table 2 and plotted in Figure

3.

g1

g2

g3

g4

RMSEssm

RMSEkr

n

0.1

1

10

100

1000

10000

17151311975

Fig. 3. Ratio RMSEkr/RMSEssm for the simulated univariate study.

For design sizes less than 10, the smooth supersaturated model compares

rather favorably with kriging. As sample size increases, the value of RMSE for

kriging becomes much smaller, relative to the smooth supersaturated model.

This phenomena of smooth supersaturated model with better RMSE than

kriging for small sample sizes was consistently observed for different numbers

of smoothing terms, ranging from three to thirty.

3.3 Smoothing and kriging: bidimensional comparison

Our second comparison was performed using bidimensional functions. The

settings were similar to the unidimensional study. The design region was [0, 1]2;

the design Dn, n = 5, . . . , 17 was composed of n − 2 points of bidimensional
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Sobol’ sequence, together with the origin and the point (1, 1). Four bivariate

functions were used as simulators:

g1(x1, x2)= sin((x1 − 0.5)2 + (x2 − 0.5)2 + 7x1(x2 − 0.5))

g2(x1, x2)= (x2 + 1/2)4/(x1 + 1/2)2

g3(x1, x2)= 3(1− u)2 exp (−u2 − (v + 1)2)− 10(u/5− u3 − v5) exp (−u2 − v2)

−1/3 exp (−(u+ 1)2 − v2)

g4(x1, x2)= 100(v − u2)2 + (1− u)2

The function g3 is the the peaks function from MATLAB R©, while g4 is the

Rosenbrock function; both were rescaled to the design region [0, 1]2 with u =

4x1 − 2 and v = 4x2 − 2. As in the unidimensional study of Section 3.2, the

functions were selected to include features which are difficult to model with

polynomials, such as flat regions with sharp peaks or oscillations with changing

frequency.
RMSEssm

RMSEkr

n

g1

g2

g3

g4

0.1

1

10

17151311975

Fig. 4. Ratio RMSEkr/RMSEssm for the simulated bivariate study.

A smooth supersaturated model with 20 additional smoothing terms was fit-

ted to the simulated values. The smoothing terms consist of the following 20

terms in the same degree lexicographic term order used for the saturated ba-

sis. This smooth model was compared with a kriging model with exponential

correlation function Corr(Y (s1, s2), Y (t1, t2)) = exp(−
∑2

i=1 θi|si − ti|
pi). The
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parameters θi, pi, i = 1, 2 were fitted using maximum likelihood. RMSE values

were computed for both fits using a set of 30 extra bivariate Sobol’ design

points. Table 3 contains values of the ratio RMSEkr/RMSEssm, which are

also plotted in Figure 4.

The results observed are similar to those of Section 3.2. The RMSE of smooth

supersaturated models compare favourably with that of kriging for small sam-

ple values. Moreover, in two cases (g1, g2) the RMSE remains smaller for

smooth supersaturated model up to sample size is 17. For g4 we observe a

similar phenomena to the unidimensional situation: from a certain sample

size (n = 13), kriging starts performing better.

We do not claim superiority of smooth supersaturated models for small sample

sizes over all circumstances. We point out rather that smooth supersaturated

models are a valuable resource for modellers that can perform better than

kriging for small sample sizes, but care should always be taken in the form of

validation and diagnostics of the models.

3.4 A case study: Engine Emissions Data

The performance of a smooth supersaturated model was evaluated against a

kriging model using the engine emissions data set analysed in Bates et al.

[2003]. This data set comes from a computer experiment without noise and

comprises 48 observations in five factors N,C,A,B and M . An extra set of 49

observations is available for validation purposes. The smooth supersaturated

model, termed ŷ, was constructed with 100 terms fitted to the set of 48 ob-

servations. For this model, 48 terms correspond to the good saturated basis
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Design Simulator used

size n g1 g2 g3 g4

5 0.817 0.297 0.964 0.785

6 0.515 0.307 1.712 0.420

7 0.409 0.923 1.538 0.460

8 0.676 0.941 2.034 0.779

9 0.735 0.934 1.136 0.923

10 1.127 0.750 1.223 0.928

11 1.155 0.765 1.344 0.992

12 1.076 0.802 1.203 0.667

13 1.208 0.760 1.195 2.904

14 1.307 0.753 1.063 4.363

15 0.598 0.835 1.002 6.288

16 0.666 0.621 1.106 6.347

17 0.776 0.280 1.110 6.846

Table 3

Ratio RMSEkr/RMSEssm for the bivariate study.

proposed in [Bates et al., 2003, Section 6.3], and this forms h(x). A set of 22

terms were added to complement missing terms of total degree three and then

a set of extra 30 terms of total degree four were added. All the extra 52 terms

described form g(x) and were added using a degree lexicographic order.
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Fig. 5. Smooth supersaturated predictions (ŷ) against spline (ŷsp) and kriging pre-

dictions (ŷkr) for the validation data set of Section 3.4.

Kriging and spline models were constructed with the first data set for com-

parison purposes. The kriging model, termed ŷkr, was built with a five dimen-

sional exponential covariance structure, with parameters estimated by maxi-

mum likelihood. The spline model, named ŷsp, was constructed with the tpaps

function from Matlab R©.

In the validation stage, predictions at the extra 49 design points were built

using the three models ŷ, ŷsp and ŷkr. Existing observations at extra design

points allow computation of RMSE. The values of RMSE for ŷ, ŷsp and ŷkr are

5.844, 5.896 and 4.450, which represent 4.4%, 4.5% and 3.4% respectively of the

range of the response values. The smooth supersaturated model ŷ compares

well with both spline and kriging, being close to the spline model.

Scatterplots were also built using validation and predicted model data. Figure

5 shows that predictions with the smooth supersaturated model are highly

correlated to those obtained with spline and kriging models. Figure 6 shows

the smooth supersaturated model to be a good predictor of the true response.
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Fig. 6. True values (y) against smooth supersaturated predictions (ŷ), spline (ŷsp)

and kriging predictions (ŷkr) for the validation data set of Section 3.4.

4 Extensions

4.1 Other smoothness criteria

There are a number of ways in which one can generalize or adapt our methods.

A similar analysis will go through for a weighted criterion

Ψ2 =
∫

X

||H(y(x))||2w(x)dx,

where w(x) is a non-negative weight function. This simply changes the defini-

tion of K and K̃, in our analysis. Also, the smoothness criteria we adopted is
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one of a number in a wider quadratic class, which includes

Ψ1 =
∫

X

|| ▽ (y(x))||2dx,

where ▽(y(x)) is the gradient vector; and a measure of deviation from a target

function can be used

Ψ3 =
∫

X

|y(x)− t(x)|2dx.

4.2 From interpolation to regression

This paper concerns the use of smooth functions as interpolators. However,

these can be used as statistical models in a straightforward way. The interpo-

lators are of the form

ŷ(x) = θ̂Tf(x) = yTBf(x)

for the matrix B, in one of our equivalent forms. We see that ŷ(x) is linear in

the observations y. The idea is to make y a free parameter, that is, to change

the role of y. Relabel y as φ and write the model as

ŷ = φTBf(x)

The design point in Dn become knots and we are parameterizing the model

by the values at the knots, as is often done with splines. With this change in

interpretation we are free to fit the models using any regression, stepwise re-

gression or penalised method we choose and there is no requirement to observe

at the knots.

However, if we do wish to observe at knots, the function k(x) = Bf(x) can

be considered as holding special kernels each with a value unity at a design
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point and zero at other design points and we can write the interpolators as

ŷ(x) =
∑

i ki(x)yi.

4.3 Optimal design versus optimal knots

We restrict the discussion to the case that K is non-singular, again for sim-

plicity. Then with our interpolators

Ψ∗

2 = yTQy = yT (XK−1XT )−1y

We first note that the design Dn affects the value of the smoothness via the

matrix X . In the pure interpolation case this happens without any statistical

considerations. Given that we have to choose the design before we observe y

one may consider minimizing some measure of the size of Q = (XK−1XT )−1,

such as det(Q). But, as pointed out, K is not typically full rank so nor is Q,

so we need a more careful analysis.

Alternatively, we may consider the design points as knots and consider the

optimal design problem based on using k(x) = Bf(x) as a set of regression

functions. The solutions typically do not place designs points at the knots, see

Woods and Lewis [2006]. This is the analogy of optimal design for spline re-

gression. In fact, the spline optimal design problem has proved hard because of

the difficulty of obtaining analytic solutions, see Kaishev [1989], Dette et al.

[2008]. We suggest that the use of the smooth polynomial methods of this

paper combined with optimal design algorithms will provide a way of approx-

imating spline optimal design over arbitrary regions X .

This discussion points to a technology for high dimensional function fitting

in which one might set up a double optimization problem: choosing knots to
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maximize smoothness and design points to optimize some statistical criterion,

or one could use combined criteria.

5 Appendix

5.1 Appendix 1: solution for θ̂0 and θ̂1

It is possible to use block matrix inverse methods, but they are a little cum-

bersome. We first find θ̂0. Writing out Equation (9) we have

X0θ0 +X1θ1 = y

Kθ1 −XT
1 λ = 0

X0λ = 0

Solving for λ from the second two equations we have

λ = (X1K
−1XT

1 +X0X
T
0 )

−1X1θ1

Using this to eliminate θ1 from the first equation we have

XT
0 (X1K

−1XT
1 +X0X

T
0 )

−1X0θ0 = XT
0 (X1K

−1XT
1 +X0X

T
0 )

−1y,

giving

θ̂0 = (XT
0 (X1K

−1XT
1 +X0X

T
0 )

−1X0)
−1XT

0 (X1K
−1XT

1 +X0X
T
0 )

−1y,
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Writing y∗ = y −X0θ̂0 we obtain reduced matrix equation:
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K̃ −XT
1

0 XT
0
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λ
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y∗

0

0





























Left multiplying by the transpose of the matrix on the left and inverting we

have

θ̂1 = (XT
1 X1 + K̃(I −XT

1 (XXT )−1X1)K̃)−1X1y
∗ (13)

Note that in the case that X0 and X1 have orthogonal columns we reduce

to the standard form θ̂0 = (XT
0 X0)

−1XT
0 y. This result can be achieved by

rewriting the supersaturated basis so that the terms with degree higher than

linear (degree one) are orthogonal to the linear terms with respect to the

design. Of course, the definition of K̃ should be changed accordingly.

5.2 Equivalence of forms in the case K nonsingular

The following three forms for θ̂ = By are equivalent, where B is one of:

(i) B1 = (XT
1 X1 +K(I − P )K)−1XTy

(i) B2 = K−1(X11, X12)
TQy

(ii) B3 = X−1
(

I

−A−1

22
A21

)

To show that B1 = B2 multiply both by XT
1 X1 +K(I − P )K and note that

PXT = XT to obtain respectively XT and XTXK−1XTQ. But from the

definition of Q and using block the partition inverse formula we see that that

XK−1XT = Q−1 and we are done (reversing the steps).
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To show that B2 = B3 we multiply both by X−1TK. Then B2 gives

X−1TKK−1(X11, X12)
TQQ−1 = X−1T (X11, X12)

T =

(

I

0

)

,

while B3 gives

X−1TKX−1
(

I

−A−1

22
A21

)

Q−1 = A
(

I

−A−1

22
A21

)

Q−1 =

















A11 A12

A21 A22

















(

I

−A−1

22
A21

)

Q−1

=
(

A11−A12A
−1

22
A21

A21−A22A
−1

22
A21

)

Q−1 =
(

A11−A12A
−1

22
A21

0

)

Q−1 =
(

I

0

)

.

Again, reversing the steps we obtain our result.
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