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The paper continues work on monomial ideals in system reliability began by Giglio and
Wynn [GW04] following work in discrete tube theory by Naiman and Wynn [NW92, NW97].
The key component is that of multigraded Betti numbers, and an algorithm using Mayer-
Vietoris trees by the first author [dC06] is the main tool.

First a mapping must be made between the states of a multistate system and a monomial
ideal, or more specifically a collection of monomials. A multi-state system is a system of n
components whose states are described by real variables Y = (Y1, . . . , Yn). The (discrete)
states of each system are labeled by {1, 2, . . .} = N so that Y = Nn. Then a = (a1, . . . , an) ∈
Y is encoded by xa = xa1

1 · · ·xan
n .

Assume that the system has a distinguished subset F , called the failure set which is
such that for a ≤ b,a ∈ F ⇒ b ∈ F . Then the system is said to be coherent: if the system
fails, in the sense of its state being in F , it will also fail at a more extreme state. The main
conceptual link between the two fields is that this correspond exactly to the monomial ideal
property. Thus, if IdF = 〈xa : a ∈ F〉 then a ≤ b, xa ∈ IdF ⇒ xb ∈ IdF . In addition we
may consider the minimal cut set F∗ which corresponds to the minimal generators of the
ideal IdF .

If the behaviour of the system is described by allowing the state to be the realisation of
a random variable Y , then the failure probability is prob{Y ∈ F}. If we can find bounds
or equalities for the indicator function of F then they are inherited by this probability.
Equivalently, here, we bound the generating function: F(x) =

∑
a∈F xa.

Consider a multigraded R-module, M, over the ring R = k[x1, . . . , xn] considered as
a k vector space over each of its multigraded “pieces”, and a monomial ideal I. If an
R-resolution P of I is multigraded we obtain the muligraded Hilbert series is given by

H(R/I;x) =
∑d

i=0(−1)i(
∑

α∈Nn γα,i · xα)∏n
j=1(1− xi)

,

where the γα,i are the ranks of the multigraded piece of degree α in the i-th module of P,
Pi. If, furthermore, the resolution is minimal then

H(R/I;x) =
∑d

i=0(−1)i(
∑

α∈Nn βα,i · xα)∏n
j=1(1− xi)

,

where βα,i are the multigraded Betti numbers of I and

βα,i ≤ γα,i ∀α, i (1)
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The central idea is that, from (1), if we set I = IdF and truncate the Hilbert series (i) we
obtain upper and lower bounds for the Hilbert series and (ii) for a minimal resolution these
bounds are at least as tight as for any other resolution:∑k+1

i=1 (−1)i−1(
∑

α∈Nn γα,i · xα)∏
i(1− xi)

≤
∑k+1

i=1 (−1)i−1(
∑

α∈Nn βα,i · xα)∏
i(1− xi)

≤ H(I;x)

≤
∑k

i=1(−1)i−1(
∑

α∈Nn βα,i · xα)∏
i(1− xi)

≤
∑k

i=1(−1)i−1(
∑

α∈Nn γα,i · xα)∏
i(1− xi)

(2)
k = 1, . . . , d− 1; k odd.

The inner inequalities in (2) give, over all resolutions the tightest inclusion exclusion
bounds for the system’s reliability for F(x). The standard inclusion exclusion bounds are
given by the Taylor complex, in which we use all all “index sets”:

H(IdF , x) =

∑r
j=1(−1)j−1

∑
|J |=j mJ∏

i(1− xi)
,

Other resolutions include the Scarf complex [MS04] which is minimal under a genericity
condition, and was already used in [GW04].

The paper considers a number of examples in which we can directly compute the multi-
graded Betti numbers of IdF , without necesarily computing the minimal free resolution.
The techniques for these computations include simplicial Koszul complexes [Bay96] and
Mayer-Vietoris trees [dC06]. Both methods make use of the equality between the Betti
numbers and the dimension of the Koszul homology modules, which comes from the equiv-
alent ways of computing Tor•(k, I) for any ideal I ⊆ k[x1, . . . , xn] either using resolutions
of I or resolutions of k, such as the Koszul complex K(I) (see [dC06]). The paper considers
three examples, two special families of systems and a general class of networks:

k-out-of-n systems. These are generated by all square free monomials in n variables of a
given degree k, such as I3,5 = 〈xyz, xyu, xyv, xzu, xzv, xuv, yzu, yzv, yuv, zuv〉. The Koszul
complex can be completely described and the multigraded Betti numbers have a closed
combinatorial form.

Consecutive k-out-of-n. Here the monomials generating the ideal are also square free but
they have the variables adjacent in sequence e.g. I3,5 = 〈xyz, yzu, zuv〉. This example is
more complex but the lexicographic Mayer-Vitoris tree can be used to find the multigraded
Betti numbers. We prove that there are no repeated multidegree exponents in the relevant
node of this tree. This gives a fast recursive method for obtain the Betti numbers for given
n and k.

Parallel-series systems. We define a mixed class called a parallel-series network as a network
such that if either N consists of an input node, an output node and a edge joining them, or if
N = N1 +N2 or N = N1×N2 with N1, N2 series-parallel networks. We prove a proposition
that such a systems have corresponding ideals which are Mayer-Vietoris ideals of type A,
i.e. the multigraded Betti numbers are abtained directly from their Mayer-Vietoris trees. In
turns out that the “+” and “×” operations which are used to build up the network induce
analogous operations in the construction of the tree and the corresponding monomial ideals.
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Introduction

The use of monomial ideals in system reliability was introduced by Giglio and Wynn [GW04]
following work on so-called discrete tube theory by Naiman and Wynn [NW92] and [NW97].
Dohmen [Doh03] uses the latter work also to study reliability. The proof of the main
result in [NW97] made use of arguments from algebra, particularly Betti numbers. Also in
[GW04], where Scarf resolutions were used, it was suggested that minimal free resolutions
should be sought. In this context, reliability bounds are given by multigraded Hilbert
functions and series of the correspondent monomial ideals, which can be read from free
resolutions. Sharper bounds are obtained via minimal resolutions, and are given by the
alternating sums of the ranks of the multigraded pieces of their modules, i.e. the multigraded
Betti numbers. For computing these, several tools are available, including simplicial Koszul
complexes [Bay96, MS04] and Mayer-Vietoris trees [dC06].

1 System reliability

A multi-state system is defined here as a system of n components whose states are described
by real variables Y = (Y1, . . . , Yn), which can be in one of a set of states which we define
as the n-dimensional non-negative integer grid Y = Nn. There is a distinguished subset,
F ⊂ Y, called the failure set, with the interpretation that if Y ∈ F the system is said to
fail. A member of F is called a cut. Let ≤ be the usual multivariate inequality y ≤ z ⇔
yi ≤ zi, i = 1, . . . , n and let y < z when y ≤ z and yi < zi for at least one i = 1, . . . , n.
Also define x ∨ y = (max(x1, y1), . . . ,max(xn, yn)). Then we call the system coherent if

y ∈ Y, y ≤ z ⇒ z ∈ Y (1)

Note that we use y to refer to a particular value (point) in Y and use Y for the random
variable describing the stochastic behaviour of the system. Coherency is the principle that
if a system has failed and the components move to a worse (higher) state value then the
system remains failed.

In reliability, Y is a random variable, which summarises the consequence of internal
degradation or external shock to the system liable to increase the values of states, although
by repair one can also decrease the value. Indeed, in Markovian systems one can consider Y
moving around Y according to a Markov chain; see, for example, the study of maintenance
systems.
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A major concern of system reliability is to evaluate or bound the probability of failure
P (F) = prob{Y ∈ F}. But we will be concerned, not so much with the dependence of
P (F) on the distribution of Y , but rather with the set F itself. Thus for any set U ⊆ Y we
define the indicator

IU (y) =
{

1 if y ∈ U
0, otherwise

Then P (F) = E (IU (Y )) and identities and bounds on indicator functions give identities
and bounds on P (F), whatever the distribution of Y .

2 Monomial ideals

The first step in the algebraization of coherent systems is to encode a point α = (α1, . . . αn) ∈
Y by a monomial xα = xα1

1 · · ·xαn
n , where x = (x1, . . . , xn) is a vector of variables. We see

immediately from the coherence property (1) that Y = Nn is coded into a set of monomials
which defines a monomial ideal

IdF = 〈xα : α ∈ F〉

and (1) is equivalent to the ideal property

xα ∈ IdF , α ≤ β ⇒ xβ ∈ IdF .

Conversely, any monomial ideal gives a failure set, under coherency. The minimal basis for
the monomial ideal IdF can be identified with the set, F∗, of minimal cuts, in the reliability
context. Thus α is a minimal cut if and only if α ∈ F , β < α ⇒ β /∈ F and moreover
IdF =< xα | α ∈ F∗ >.

A subset U ⊂ Y has a unique generating function:

U(x) =
∑
α∈U

xα,

and identities and inequalities on their indicator functions, IU (y) can be translated precisely
to those for the corresponding generating functions. In particular we shall be interested in
identities and bounds for F(x), the generating function of the failure set F . The generating
function for the whole of Y = Nn and for the monomial ideal generated by a single monomial
are respectively

Y(x) = 1Qn
i=1(1−xi)

,

{β}(x) = xβQn
i=1(1−xi)

As an example, consider just two minimal cuts, F∗ = {β, γ}. Then the failure ideal is
IdF =< xβ, xγ >, and the generating function of the associated monomial set is

F(x) =
xα + xβ − lcm(xα, xβ)∏n

i=1(1− xi)
= {α}(x) + {β}(x)− {α ∨ β}(x) (2)

This represents inclusion-exclusion for the failure set of the relevant upper orthants in the
original system Y:

IQ(α)∪Q(β) = IQ(α)(y) + IQ(β)(y)− IQ(α)∩Q(β)(y) = IQ(α)(y) + IQ(β)(y)− IQ(α)(y)IQ(β)(y),
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where Q(α) = {β|α ≤ β}, etc are the orthants. Note that if we omit the last term on
the right hand side we obtain an upper bound to the indicator function which gives the
elementary Bonferroni bound: prob(Q(a) ∪Q(b)) ≤ prob(Q(a)) + prob(Q(b)).

3 Improved bound via the multigraded Hilbert Series

Consider a multigraded R-module, M, over the ring R = k[x1, . . . , xn] considered as a k
vector space over each of its multigraded “pieces”. If each of the dimensions is finite we can
define the multigraded Hilbert series as the formal power series

H(M;x) =
∑

α∈Nn

dimk(M)αxα

For a resolution of the quotient of R by monomial ideal I we have, from the rank-nullity
principle, that

H(R/I;x) =
d∑

i=0

(−1)iH(Pi;x),

where the Pi, i = 0, . . . , d are the modules in the resolution of R/I. If the resolution is
multigraded each Pi =

⊕
α∈Nn γα,iPα,i for scalars γα,i, of which only a finite number are

non-zero. Then

H(R/I;x) =
∑d

i=0(−1)i(
∑

α∈Nn γα,i · xα)∏n
j=1(1− xi)

If the resolution is minimal then

H(R/I;x) =
∑d

i=0(−1)i(
∑

α∈Nn βα,i · xα)∏n
j=1(1− xi)

,

where βα,i are the multigraded Betti numbers and, importantly,

βα,i ≤ γα,i ∀α, i (3)

When I = IdF the Hilbert series of I and R/I are, respectively, the generating functions
of F and Y \ F , the latter being the non-failure set (where the systems works), and

H(I;x) =
∑d

i=1(−1)i−1(
∑

α∈Nn γα,i · xα)∏
i(1− xi)

The key idea for system reliability is that if we truncate this multigraded Hilbert series,
using exactness and the optimality (3), (i) we obtain upper and lower bounds for the Hilbert
function and (ii) for a minimal resolution these bounds are at least as tight as for any other
resolution:∑k+1

i=1 (−1)i−1(
∑

α∈Nn γα,i · xα)∏
i(1− xi)

≤
∑k+1

i=1 (−1)i−1(
∑

α∈Nn βα,i · xα)∏
i(1− xi)

≤ H(I;x)

≤
∑k

i=1(−1)i−1(
∑

α∈Nn βα,i · xα)∏
i(1− xi)

≤
∑k

i=1(−1)i−1(
∑

α∈Nn γα,i · xα)∏
i(1− xi)

(4)
k = 1, . . . , d− 1; k odd.
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3.1 Different resolutions

Let F be the failure set for a coherent system and label its elements F∗ = {α(i), i = 1, . . . , r}.
For an index set J ⊂ {1, . . . , r} define mJ = lcm{xα(j)

, j ∈ J}. Then the classical inclusion
exclusion lemma corresponds to the Taylor resolution and we can write the generating
function, equivalently Hilbert series, as

H(IdF , x) =

∑r
j=1(−1)j−1

∑
|J |=j mJ∏

i(1− xi)
,

Since the minimal resolution is a subresolution of the Taylor resolution, from (4) we can
claim that truncated inclusion-exclusion bounds based on minimal free resolutions is at least
as good as the truncated inclusion-exclusion bounds, sometimes referred to as generalised
Bonferroni bounds.

It may be that we have repetitions of mj in the Taylor complex. A simplicial complex
similar to the Taylor complex in construction but which is restricted to unique labels (mI =
mJ ⇒ I = J) is the Scarf complex (see [MS04]). If in addition the generators xα, x ∈ F∗

are in generic position (no variable xi appears with the same (non-zero) exponent in two
distinct generators) then the Scarf complex gives a minimal free resolution of IdF . There are
a number of other types of resolutions, including Lyubeznik resolution, cellular resolutions,
or the recent resolutions constructed via frames and degenerations [PV07], but the efficient
computation of the minimal free resolution of a monomial ideal is in general a complicated
task. Some methods for the computation of multigraded Betti numbers are described in
the next section.

4 Computation of multigraded Betti numbers of monomial
ideals

Since we are interested in the multigraded Betti numbers of IdF , we can use methods that
compute them without necesarily computing the minimal free resolution. These include
simplicial Koszul complexes [Bay96] and Mayer-Vietoris trees [dC06], which, in addition to
its general algebraic uses, appear to be effective for certain types of problems in reliability.
Both methods make use of the equality between the Betti numbers and the dimension of the
Koszul homology modules, which comes from the equivalent ways of computing Tor•(k, I)
for any ideal I ⊆ k[x1, . . . , xn] either using resolutions of I or resolutions of k, such as the
Koszul complex K(I) (see [dC06]).

4.1 Simplicial Koszul complexes

Definition 4.1 Let I be a monomial ideal, α = (a1, . . . , an) ∈ Nn and xα ∈ I. The Koszul
simplicial complex, is given by

∆I
α = {squarefree vectors τ |xα−τ ∈ I}

With this definition we have the following result that relates the simplicial homology of
the Koszul simplicial complex to the multidegree α Betti numbers of I (see [Bay96],[MS04]).
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Theorem 4.2
βi,α(I) = dim(Hi,α(K(I))) = dim(H̃i−1(∆I

α)) ∀i

If we call LI to the lcm-lattice of I = 〈m1, . . . ,mr〉, i.e. the lattice with elements labeled
by the least common multiples of subsets of {m1, . . . ,mr} ordered by divisibility, we have
that

βi,α(I) = 0 if α /∈ LI (5)

Therefore, to compute the dimensions of the multigraded Koszul homology modules of I, i.e.
the multigraded Betti numbers of I, we need only compute the dimensions of the homology
of the simplicial Koszul complexes at the points in LI , which is a finite set.

4.2 Mayer-Vietoris trees

Given a monomial ideal I minimally generated by {m1, . . . ,mr}, we can construct an ana-
logue of the well known Mayer-Vietoris sequence from topology, in the following way:

Definition 4.3 For each 1 ≤ s ≤ r denote Is := 〈m1, . . . ms〉, Ĩs := Is−1 ∩ 〈ms〉 =
〈m1,s, . . . ,ms−1,s〉, where mi,j denotes lcm(mi,mj). Then, for each s we have

· · · −→ Hi+1(K(Is))
∆−→ Hi(K(Ĩs) −→

Hi(K(Is−1)⊕K(〈ms〉)) −→ Hi(K(Is))
∆−→ · · · (6)

And since the Koszul differential respects multidegrees, we also have a multigraded version
of the sequence.

Using recursively these exact sequences for every α ∈ Nn we could compute the Koszul
homology of I = 〈m1, . . . ,mr〉. The involved ideals can be displayed as a tree, the root
of which is I and every node J has as children J̃ on the left and J ′ on the right (if J
is generated by r monomials, J̃ denotes J̃r and J ′ denotes Jr−1). This is what we call a
Mayer-Vietoris Tree of the monomial ideal I, and we will denote it MV T (I). Each node
in a Mayer-Vietoris tree is given a position: the root has position 1 and the left and right
children of the node in position p have respectively, positions 2p and 2p + 1. The node in
position p is denoted MV Tp(I).

Remark 4.4 We can sort the generators in a node J of a Mayer-Vietoris trees in many
different ways, and for each such sorting there is a different Mayer-Vietoris tree. For
simplicity of notation, we assume we have the generators already sorted and use the last
generators to obtain the ideals J̃ and J ′. In fact we only need a strategy to select a monomial
in the node, which acts as a “pivot” for the construction of the tree. If we sort all the nodes
using a term order, for example, lexicographic, and use the last monomial in each node as
“pivot”, we say we build the lexicographic tree, and so on.

The properties of Mayer-Vietoris trees allow us to perform Koszul homology computa-
tions using them (see the details in [dC06]).

Proposition 4.5 If Hi,α(K(I)) 6= 0 for some i, then xα is a generator of some node J in
any Mayer-Vietoris tree MV T (I).
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Thus, all the multidegrees of Koszul generators (equivalently Betti numbers) of I appear in
MV T (I). For a sufficient condition, we need the following notation: among the nodes in
MV T (I) we call relevant nodes those in an even position or in position 1.

Proposition 4.6 If xα appears only once as a generator of a relevant node J in MV T (I)
then there exists exactly one generator in H∗(K(I)) which has multidegree α.

The dimension of the homology to which relevant multidegrees contribute, can also be read
from their position in the tree.

4.2.1 Mayer-Vietoris ideals

Let I be a monomial ideal and MV T (I) a Mayer-Vietoris tree of I. Let α ∈ Nn; let
βi,α(I) = 1 if α is the multidegree of some non repeated generator in some relevant node
of dimension i in MV T (I) and βi(I) = 0 in other case. Let β̂i,α(I) be the number of times
α appears as the multidegree of some generator of dimension i in some relevant node in
MV T (I). Then for all α ∈ Nn we have

βi,α(I) ≤ βi,α(I) ≤ β̂i,α(I)

Definition 4.7 Let I be a monomial ideal.

• If there exists a Mayer-Vietoris tree of I such that there is no repeated generator in
the ideals of the relevant nodes, then we say that I is a Mayer-Vietoris ideal of type
A. In this case, βi,α(I) = βi,α(I) = β̂i,α(I) ∀i ∈ N, α ∈ Nn.

• If βi,α(I) = βi,α(I) for all α ∈ Nn then we say that I is a Mayer-Vietoris ideal of type
B1.

• If β̂i,α(I) = βi,α(I) for all α ∈ Nn then we say that I is a Mayer-Vietoris ideal of type
B2.

Remark 4.8 It is not hard to show [dC06] that Mayer-Vietoris trees provide resolutions
of the corresponding ideals. Therefore, the alternating sums of the bounds of the Betti
numbers that are given by these trees provide reliability bounds in the sense exposed above.
If the corresponding ideal is Mayer-Vietoris of type A or B2 then the resolution given by
the Mayer-Vietoris tree is minimal. If it is of type B1, the minimal resolution is not
directly obtained by the tree (we need to perform further computations to minimize it) but
the multigraded betti numbers are immediately read from the tree, so sharp reliabilty bounds
are also provided, observe that generic ideals are Mayer-Vietoris of type B1. In the other
cases, the resolutions obtained by the tree are not minimal in general, but their size is
relatively small (see examples in [dC06]) and therefore the reliability bounds provided by
Mayer-Vietoris trees are fairly good in average for general ideals.

5 Special examples in reliability

Classical system reliability deals with two-state or binary systems in which Y = {0, 1}d:
every component can fail or not fail. Because in general such systems are not generic the
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minimal resolution cannot be derived from the Scarf complex and some kind of algorithm
to find the minimal resolution must be used. In [2] a special perturbation method was used.
A starting point for the present collaboration was made when it transpired that some of
the examples in that paper were indeed minimal resolutions and some not. It pointed to
systematic application of a minimal free resolution method to reliability. We begin with
two classical problems, k-out-of-n and consecutive k-out-of-n systems and then address
an important class of problem at the heart of reliability theory namely series and parallel
systems. In these problems our aim is always to derive the multigraded Betti numbers which
give the optimal bounds in the sense of (4). The results may be purely computational, for
example in some complex case, or may lead to a theoretical result in which the Betti numbers
can be given a closed form or be related to the structure of the problem in some way.

5.1 k-out-of-n systems

A k-out-of-n system is one in which if at least k out of a total of n components fail then the
system is said to fail. There is a considerable literature in the area within reliability but it
may first have arisen in the context of occupancy problems and is covered in the classical
text by Feller [Fel71] the first edition which was 1950 and contains a footnote to M. Frechet.
The formula in [Fel71] Chapter IV Section 5 is exactly as derived here by our methods.

A k-out-of-n system can be modeled by the ideal

Ik,n = 〈xµ : xµ is a squarefree monomial of degree k in n variables〉

for example, I3,5 = 〈xyz, xyu, xyv, xzu, xzv, xuv, yzu, yzv, yuv, zuv〉 is the ideal correspond-
ing to the 3-out-of-5 problem. Observe that Ik,n has a minimal generating set which consists
of

(
n
k

)
monomials. Using the result pointed in equation (5), we know that we have to check

the Koszul homolgy only in the multidegrees that are in the lcm-lattice of I, namely LI . It
is easy to see that LI consists of all squarefree monomials involving a number of variables
between k and n. The following lemma caracterizes the Koszul simplicial complex at each
of these multidegrees:

Lemma 5.1 If α ∈ LI has k + i nonzero indices, k < k + i ≤ n, the simplicial Koszul
complex ∆Ik,n

α consists of all j-faces with 0 ≤ j ≤ i− 1.

Proof: Let xα be a squarefree monomial consisting of the product of k + i variables,
k < k + i ≤ n. If we divide xα by the product of j of these variables then: If j ≤ i then
the resulting monomial is the product of a set of k + i− j variables, and thus, a j − 1 face
is present in the Koszul simplicial complex. If j > i then the result of the division is the
product of k + i − j variables, being j > i, k + i − j < k and thus this product is not in
Ik,n, so no j − 1 face is in the simplicial Koszul complex for j > i.�

Thus, the (α, i)-th Betti number at the multidegree given by any combination of k + i
variables is dim(H̃i−1(Ck,i)), where Ck,i is the subcomplex of the k + i dimensional simplex
∆k+i having as facets all the (i− 1)-faces. And then, βi(Ik,n) =

(
n

k+i

)
· dim(H̃i−1(Ck,i)), for

all i ∈ {0, . . . , n− k}.
Our next goal is then to compute the dimension of the reduced homology of the com-

plexes Ck,i. Since all faces in dimension less or equal i − 1 are present in the complex, we
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know that Ck,i has zero homology at all dimensions except possibly at dimension i−1. The
chain complex of Ck,i has the following form:

0 → Ci−1
δi−1→ · · · → C1

δ1→ C0 → 0

we have H̃j(Ck,i) = 0∀j < i − 1 thus ker δj/im δj+1 = 0 and dim(ker δj) = dim(im δj+1)
for all j < i− 1. On the other hand, we have the usual equality

dim(ker δj) = dim(Cj)− dim(im δj)

putting these together we have that

dim(H̃i−1(Ck,i) = dim(ker δi−1) =
(

k + i

i− 1

)
−

(
k + i

i− 2

)
+ · · ·+ (−1)i−2

(
k + i

1

)
+ (−1)i−1

We can use now the following combinatorial identity:(
k + i

i− 1

)
−

(
k + i

i− 2

)
+ · · ·+ (−1)i−2

(
k + i

1

)
+ (−1)i−1 =

(
i + k − 1

k − 1

)
and we obtain that for every α ∈ LI where α is the product of k + i variables, we have that

β(α,i)(Ik,n) =
(

i + k − 1
k − 1

)
and since we have

(
n

k+i

)
such an α, it follows that

βi(Ik,n) =
(

n

k + i

)
·
(

i + k − 1
k − 1

)
∀0 ≤ i ≤ n− k.

These considerations lead us to the following formula for the multigraded Hilbert series
of I:

H(Ik,n;x) =

∑
i(−1)i

(
i+k−1
k−1

)
· (

∑
α∈[n,k+i] ·xα)∏

i(1− xi)
,

where [n, k + i] denotes the set of (k + i)-subsets of {1, . . . , n}.

Example 5.2 For I3,5 we have

H(R/I3,5;x) =
1− (xyz + xyu + xyv + xzu + xzv + xuv + yzu + yzv + yuv + zuv)

(1− x)(1− y)(1− z)(1− u)(1− v)

+
3(xyzu + xyzv + xyuv + xzuv + yzuv)

(1− x)(1− y)(1− z)(1− u)(1− v)
− 6(xyzuv)

(1− x)(1− y)(1− z)(1− u)(1− v)
,

the Betti numbers of I3,5 are then: β0 = 10, β1 = 15 and β2 = 6.

Remark 5.3 It is not hard to show that a k-out-of-n ideals is Mayer-Vietoris of type B2.
Therefore, its Mayer-Vietoris tree provides the minimal resolution.
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5.2 Consecutive k-out-of-n systems

Consecutive, also called “sequential”, k-out-of-n systems fail whenever at least k consecutive
components in an ordered list of n components fail. It is also covered by Feller [Fel71]
Chapter XIII. It is of some interest that Dohmen [Doh03] investigates them using a version
of the methods in [3] and [4]. In addition to a significant literature within reliability the
topic has received renewed interest because of its use in the fast detection of fluctuations
in data streams using statistics collected from windows of data: so-called “scan statistics”;
see Glaz, Naus and Wallenstein [GNW01]. In the probability literature the emphasis is in
computing probabilities under given distributional assumptions, whereas, as pointed out in
the Section 1, the bounds we derive are distribution free.

Consecutive k-out-of-n systems can be modelled by the ideals

Īk,n = 〈xµ : µ is a squarefree monomial in n variables formed by k consecutive variables〉.

For example, Ī3,5 = 〈xyz, yzu, zuv〉 is the ideal corresponding to the consecutive 3-out-of-5
system. In order to find the multigraded Betti numbers and Hilbert series of Īk,n we will
use its lexicographic Mayer-Vietoris tree. The explicit construction of this tree will give us
the results we need. For greater clarity, we will denote the monomials by their exponents
in brackets, e.g the monomial x1x3x6 will be denoted by [1, 3, 6], since we are dealing with
squarefree monomials, this notation suffices.

MVT(̄Ik,n)

We sort the generators of Īk,n using the lexicografic order. The construction of MV T (Īk,n)
is as follows:

1. The root node is just Īk,n, which is minimally generated by n− k + 1 monomials.

2. The right child of the root, i.e. MV T3(Īk,n) is Īk,n−1, so we hang here the correspond-
ing tree.

3. The left child of the root, MV T2(Īk,n), consists of the following n−2k+1 monomials:

[j, · · · (j +k−1), (n−k+1), · · · , n] for 1 ≤ j ≤ n−2k which are the least common
multiples of each of the first n − 2k generators of the root with the last one. These
generators have 2k variables.

[n − k, · · · , n] which is the lcm of the last two generators of MV T (Īk,n)1 and
divides [n − k − j, · · · , n] for 1 ≤ j ≤ (k − 1) and hence these last will not appear as
minimal generators of this node. This generator has k + 1 variables and since we are
using lexicographic order, it will appear as the last generator in MV T2(Īk,n).

4. The following nodes to consider are MV T4(Īk,n) and MV T5(Īk,n), but only if MV T2(Īk,n)
has more than one generator i.e. if 2k < n, otherwise they are empty. If it is the case,
then

MV T4(Īk,n) consists of n − 2k generators, namely the lcms of the first n − 2k
generators of MV T2(Īk,n) with the last one. These have the form [j, · · · (j + k −
1), (n− k), · · · , n] for 1 ≤ j ≤ n− 2k and hence, this node is exactly equal to Īk,n−k−1
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with each monomial in it multiplied by [n − k, · · · , n]. Hence, we hang here a tree
‘isomorphic’ to MV T (Īk,n−k−1).

MV T5(Īk,n) is completely analogous to MV T4(Īk,n) and hence equal to Īk,n−k−1

but this time each monomial in it is multiplied by [n− k + 1, · · · , n]. Hence, we also
hang here a tree isomorphic to MV T (Īk,n−k−1). The trees we have hanging from the
corresponding nodes are of the same form, except that they have less variables, in
particular they are of the form MV T (Īk,j) with j < n. Eventually, we will have the
situation in which 2k ≥ n and in this case, the left child of the root has only one
generator, namely [j− k, . . . , j], and the right node is the consecutive k-out-of-(j− 1)
tree, so we proceed in this manner until j = k + 1.

Example 5.4 Here is the tree corresponding to the consecutive 2-out-of-6 system:

xy, yz, zt, tu, uv

xyuv, yzuv, tuv

xytuv, yztuv

xyztuv xytuv

xyuv, yzuv

xyzuv xyuv

xy, yz, zt, tu

xytu, ztu

xyztu xytu

xy, yz, zt

yzt xy, yz

xyz xy

Taking into account the properties of the Mayer-Vietoris trees of these ideals, we see
that we can read the multigraded Betti numbers directly from the tree:

Proposition 5.5 The ideal corresponding to the consecutive k-out-of-n system is Mayer-
Vietoris of type A.

Proof: Assume we have Īk,n as the root of our tree, sorted with respect to lexicographic
order, then the variable n appears only in the left child of the root, and it will appear in
every multidegree of every node in the tree hanging from this node (see the construction
above). Thus, no multidegree of the tree hanging from the left child will appear in the tree
hanging from the right child, and vice-versa. If 2k ≥ n then we are done, since the left node
has just one generator, and the tree hanging from the right node is the one correspondng
to the k-out-of-(n − 1) system. If the left child of the root has more than one generator,
then we look at its children, MV T4(Īk,n) and MV T5(Īk,n). The generators of the first one
are not present in any node seen so far, and all of them contain the variables (n−k), . . . , n;
moreover, every generator of the nodes of the tree hanging from it will have these variables.
On the other hand, the variable n − k does not appear in the generators of MV T (Īk,n)5
hence, no multidegree of a generator in the tree hanging from it will appear in the tree
hanging from MV T (Īk,n)4 and viceversa. Finally, we see that no multidegree appearing
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in any relevant node of the tree hanging from MV T (Īk,n)5 is in MV T (Īk,n)2. We know
that MV T (Īk,n)5 is generated by the generators of MV T (Īk,n)2 except the last one. Now,
every generator of every node in the tree hanging from MV T (Īk,n)5 will have at least 2k+1
different variables, k of which will be (n − k + 1), . . . , n (see the construction of the tree),
and on the other hand, the generators in MV T (Īk,n)2 have at most 2k different variables.
�

With this proposition we have that collecting all the generators of the relevant nodes in
MV T (Īk,n) we have the multigraded Betti numbers of Īk,n in this case, since no generator
in the relevant nodes is repeated, we have that the Betti number at each multidegree is 1,
every multidegree appears only once in the minimal resolution of the ideal. The description
of the tree and its recursive construction give us also means to count how many multidegrees
appear in each dimension (i.e. the Betti numbers) and which multidegrees are present. A
thorough description of this process would be tedious, but it is not difficoult to obtain a
complete list of the multidegrees of the Betti numbers, and hence, of the Hilbert series.
however, here we only give an idea of the procedure; an algorithm has been implemented
by the authors to generate this list. The main lines of the construction of this list of
multidegrees are the following.

1. In dimension 0 collect all the generators of Īk,n.

2. In dimension 1 collect all the multidegrees of the form [j, . . . , j+k] for 1 ≤ j ≤ (n−k).
1 Moreover, for k ≤ j ≤ (n − k), add the multidegrees [1, · · · , k, (j + 1), · · · , (j +
k)], . . . , [(j − k), . . . , (j − 1), (j + 1), · · · , (j + k)].

3. For every dimension l add the corresponding multidegrees that appear in Īk,j−k−1 in
dimension (l−2) ≥ 0 multiplied by [(j−k), . . . , j] and the multidegrees that appear in
Īk,j−k−1 in dimension (l−1) ≥ 0 multiplied by [(j−k+1), . . . , j] for all (2k+1) ≤ j ≤ n

Example 5.6 As we can see from the tree of Ī2,6, the Betti numbers are β0 = 5, β1 = 7,
β2 = 4, β3 = 1. And the multigraded Hilbert series:

H(R/Ī2,6;x) =
1− (xy + yz + zt + tu + uv)

(1− x)(1− y)(1− z)(1− t)(1− u)(1− v)

+
(xyuv + yzuv + tuv + xytu + ztu + yzt + xyz)

(1− x)(1− y)(1− z)(1− t)(1− u)(1− v)

− (xytuv + yztuv + xyzuv + xyztu)
(1− x)(1− y)(1− z)(1− t)(1− u)(1− v)

+
(xyztuv)

(1− x)(1− y)(1− z)(1− t)(1− u)(1− v)
,

1Note that in the case 2k ≥ n these are the only ones we have to add, and the corresponding formula is
equivalent to the one appearing in [Doh03]
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5.3 Series and parallel systems

We turn now to series-parallel system, a special although very natural type of networks.
Consider a edge p joining two nodes I and O. We call such a network a basic series-parallel
network. Consider now two series-parallel networks N1 and N2. We can connect them in
series or in parallel, and the result is a series-parallel network. This is done in the following
way:

• First, we rename the edges in each node so that each edge has a different label. If the
edge pS for some (possibly empty) set S of subindices is in network i we can rename
it p{i}∪S . After this, we can still rename them just by counting them in lexicographic
order.

• If the initial (input) node of Ni is labelled Ii and its final (output) node is labelled Oi

for i = 1, 2, then the parallel union of N1 and N2, which we will denote N = N1 + N2

identifies I1 and I2 in one node I, which will be the initial node of N , and identifies
O1 and O2 in one node O, which will be its final node.

• With the same notation as above, the series union of N1 and N2, which we will denote
N = N1 ×N2 has as initial node I1, as final node O2, and identifies O1 and I2 in one
intermediate node S.

We just formalize these considerations in the following definition of series-parallel networks:

Definition 5.7 We say that a network N is a parallel-series network if either N consists of
an input node, an output node and a edge joining them, or if N = N1 +N2 or N = N1×N2

with N1, N2 series-parallel networks.

These constructions can be seen in figure 1, in which the label of the edge pS is just S.
Now consider the ideals associated to these networks. It is clear that the ideal IN of

a network N with just one edge p1 connecting two nodes I and O is just IN = 〈x1〉. The
construction operations + and × we have just seen, have their counterpart in the ideals of
the resulting networks:

Proposition 5.8 Let N1 and N2 be two networks the edges of which are labelled (after
renaming as seen above) p1, . . . , pn1 and pn1+1, . . . , pn1+n2. Then,

IN1+N2 = IN1 + IN2 IN1×N2 = IN1 ∩ IN2

where IN1+N2 and IN1×N2 are ideals in k[x1, . . . , xn1+n2 ]

Proof: We have that

IN = 〈xS |S = {s1, . . . , sks} is a minimal connection in N〉

Therefore, the minimal pathes in N1 + N2 are those of N1 and those in N2, and there is
no mixture between them. Then, it is easy to see that the generating set of IN1+N2 is just
the union of the generating sets of IN1 and IN2 , each being generated in a different set of
variables.

Now, the minimal paths of N1 × N2 can be split into two parts, the first one being a
minimal path from IN1×N2 to S and the second one being a minimal path between S and
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I O
1 2

I O

1

2

N1 N2

I O

11 := 1 12 := 2

21 := 3

22 := 4

I S O
11 := 1 12 := 2

21 := 3

22 := 4

N1 + N2 N1 ×N2

Figure 1: Example of series-parallel network construction.

ON1×N2 . Thus, each combination of one minimal path in N1 and one minimal path in N2

is a minimal path in N1 × N2 and there are no other minimal pathes. Since there is no
intersection between the set of variables of IN1 and IN2 the concatenation simply means a
product, and hence the result. �

Example 5.9 Consider the networks in figure 1, where := expresses relabelling. After
relabelling, the edges in N1 are p1 and p2, and the edges in N2 are p3 and p4. We have that

IN1 = 〈x1x2〉, IN2 = 〈x3, x4〉, IN1+N2 = 〈x1x2, x3, x4〉, IN1×N2 = 〈x1x2x3, x1x2x4〉

Mayer-Vietoris trees give a good way to compute the multigraded Betti numbers of
series-parallel ideals, and hence, the reliability of the corresponding network:

Proposition 5.10 The ideals associated to series-parallel networks, i. e. series-parallel
ideals, are Mayer-Vietoris ideals of type A.

Proof: If N is a basic series-parallel network with unique edge p1 then IN = 〈x1〉 which is
Mayer-Vietoris of type A. Now consider two series-parallel networks N1 and N2 whose ideals
are Mayer-Vietoris of type A, i.e. there is some strategy for selecting the pivot monomials
when constructing a Mayer-Vietoris tree such that it is of type A. We have to proof that
IN1 + IN2 and IN1 ∩ IN2 are Mayer-Vietoris of type A:

• The generators of IN1 + IN2 are the union of the generating sets of IN1 and IN2 .
We sort them so that the generators of IN2 all appear after the generators of IN1 .
We now proceed taking as pivot monomial always a generator of IN2 following the
strategy used to build the minimal Mayer-Vietoris tree of IN2 . Doing so, we have
that MV Tp(IN1 + IN2) has as generators the generators of IN1 each one multiplied

13



by some product of the variables of IN2 and also the generators of MV Tp(IN2). So
far, we have no repeated generators in the relevant nodes: Assume that there is some
generator repeated in two relevant nodes at positions p and q. Then they have the
same exponents in the variables of IN1 and the same exponent in the variables of IN2 .
If the generator has only variables of the second ideal, to be equal would mean that
they are equal in MV T (IN2). And since those generators with ‘mixed variables’ are
all of the form m ·m′ with m a minimal generator of IN1 , no two of these are repeated.

This procedure takes us to nodes in which no further element only in the variables of
IN2 is available. From this now on we follow on each node the strategy of MV T (IN1).
Since these nodes in positions p have as generators all the minimal generators of IN−1

times some polynomial m′
p in the variables of the second ideal. And since the m′

p

are different for different p, we have that al the trees hanging from these nodes are
isomorphic to MV T (IN1), therefore, there’s no repeated generator in the relevant
nodes in each of them. There is also no repetition among the different ‘copies’of
MV T (IN1) because of each m′

p is unique.

• IN1 × IN2 . Let us denote by m1, . . . ,mr the generators of IN1 , and by m′
1, . . . ,m

′
s the

generators of IN2 . Then IN1×N2 = IN1 ∩ IN2 is generated by {mim
′
j |i = 1, . . . , r; j =

1, . . . , s}. Every generator of a relevant node in MV T (IN1×N2) is of the form mJm′
J ′

with J, J ′ subsets of {1, . . . , r} and {1, . . . , s} respectively. We sort these generators
so that we can follow a strategy ‘compatible’ with the strategies of MV T (IN1) and
MV T (IN1): assuming that the generators in each of these trees wer sorted in such a
way that the last one is always the pivot monomial, we sort the generators in our new
tree in the following way: mJm′

J ′ precedes mKm′
K′ if mJ precedes mK in MV T (IN1),

or if mJ = mK and m′
J ′ precedes m′

K′ in MV T (IN2). Since the variables in IN1

are all different from the variables in IN2 , and because of the ‘compatible’strategy
when constructing MV T (IN1×N2), we have that if mJ ·m′

J ′ is in a relevant node of
MV T (IN1×N2), the mJ is in a relevant node of MV T (IN1) and m′

J ′ is in a relevant
node of MV T (IN2). It is clear that any two generators mJ · m′

J ′ and mK · m′
K′

satisfy that J 6= K and/or J ′ 6= K ′. Therefore, if mJ ·m′
J ′ = mK ·m′

K′ it is because
mJ = mK and m′

J ′ = m′
K′ , which is a contradiction. So, in any case, the new ideal is

Mayer-Vietoris of type A. �

6 Conclusions

It has been a long standing challenge to obtain improved bounds of Bonferroni type in
system reliability, with many different types of improvement being suggested. We have
shown that, among a class of bounds of resolution type, which include the classical case
(equivalent to the Taylor resolution), the minimal free resolution is optimal and moreover
this resolution is completely described by the multigraded Betti numbers. The computation
of these numbers is usually done via minimal free resolutions, but these are in general hard
to compute. In certain important classes of systems, alternative methods, such us the one
proposed by the first author, can be used to obtain the multigraded Betti numbers in a
more efficient way. On one side that these alternative methods should be used for such
situations, and on the other side, that algebraic techniques can and should be used in many
cases to improve the bounds given in the literature on coherent systems.
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We have studied three types of system: two rather special and one, the series-parallel
systems which is rather more general. But there are many other systems or which is leading
example is give by a general network. One immediate example is a general network: what
are the multigraded Betti numbers for a general network? Is there a very fast algorithm
which relates them to the incidence structure?

An advantage of the current methods is that they apply naturally to the multi-state
coherent systems case which are less thoroughly covered in the reliability literature. Indeed,
the key connection is to code a state by the exponent of a monomial ideal. A big challenge
both from the point of algebra and reliability is to generalise the notion of coherency. This
would require different “geometries” to be included from that of unions of upper orthants.
Other geometries were used in the original work on discrete tubes, [NW92], [NW97] and
include unions of balls or half-spaces.

The connection of the present work with that of Dohmen [Doh03] needs to be studied. In
addition to his application of discrete tube theory to reliability that author makes interesting
links with other areas of combinatorics such as lace expansions, chromatic numbers and the
Whitney broken circuit theorem. It is likely that minimal free resolutions and multigraded
Betti numbers will be found to play a role in those theories also.

As pointed out the bounds given here are distribution-free: they are independent of
the distribution of the random variable Y defining the (stochastic) system. But where the
distribution takes a particular form eg independent failure of components or, say, a Markov
chain, it is to be hoped that there is synergy between the minimal bounds give here and
the distributions. This may leading to useful formulae for failure probabilities in particular
cases. In statistics and probability there is interest in extreme events, for example for testing
some kind simple null hypotheses, such as independence. Our bounds may contribute to
an asymptotic theory as the failure set is pushed outwards, so that the first few terms of
the bounds give simple formulae. To put it more succinctly: do multigraded Betti numbers
play a part in certain ”large deviation” theories?
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