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1. Introduction: Monte Carlo integration

The raison d’être of ensemble experiments is uncertainty about the model, usually
concerning the relationship between the model and the climate itself. Traditionally
the focus has been on varying the initial conditions, to sample internal climate
variability. But more recently the focus has broadened to include other uncertain
quantities, such as the model parameters. In this paper we describe the lack of
precision that results from limits on the number of model evaluations we can per-
form. This section and §2 consider a simple approach based on random-sampling,
while §3 and §4 consider an alternative approach using emulators, which leads to a
completely different treatment of the model evaluations. Section 5 concludes.

We think of our climate model as the mapping g : x 7→ y, where x denotes
model-inputs, for example initial conditions, forcing functions, and model parame-
ters, g(·) denotes the model, and y denotes a point in the model’s output-space. We
will focus on one particular type of inference, namely uncertainty analysis, which
is inference about a model-output given uncertainty in the model-inputs. If we de-
note by x∗ the uncertain model-inputs, then we would like to make inferences about
the uncertain scalar quantity y∗ , g(x∗) for some given distribution function Fx∗ ;
here ‘,’ denotes ‘defined as’. For a climate model we would expect x to comprise
both continuous and discrete quantities, and so we cannot assume the existence
of a density function for x∗. This has both technical and practical consequences.
The technical consequences can be minimised by describing our inferences in terms
of expectations; the practical consequences will be introduced in §2. We will as-
sume throughout that g(·) is sufficiently well-behaved that g(x∗) is a well-defined
uncertain quantity and all the necessary expectations exist.

Our uncertainty analysis is fully-described by the distribution function for y∗,

Fy∗(v) , Pr[y∗ ≤ v] = EFy∗[I(y
∗ ≤ v)] (1.1)

where I(·) = 1 if true and 0 otherwise, and EFy∗[·] is the expectation with respect
to the distribution function Fy∗ . This distribution function is implied by g(·) and
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our choice of Fx∗ , and we can compute Fy∗(v) as

Fy∗(v) = EFx∗

[
I(g(x∗) ≤ v)

]
. (1.2)

If g(·) is a climate model we do not expect to be able to evaluate this expression
directly, but we can approximate it, and so our attention turns to the nature and
accuracy of the approximation.

The simplest way to approximate Fy∗(v) is to use Monte Carlo (MC) integration

Fn
y∗(v) , n−1

n∑
i=1

I(yi ≤ v) where yi , g
(
x(i)

)
and x(i) iid∼ Fx∗ . (1.3)

We sample X ,
{
x(1), . . . ,x(n)

}
independently from Fx∗ , and we run the climate

model at each xi to compute yi, which gives us Y , {y1, . . . , yn}, an independent
and identically-distributed (iid) sample from the density function Fy∗ . Together,
(Y ;X) constitute our ensemble of model evaluations. Note, however, that for the
inference about y∗ only Y is used: generating the x(i) is simply a step in the process
of sampling from Fy∗ . We refer to this as a Monte Carlo ensemble.

We can construct an estimate of the entire distribution function for y∗ from
one sample of size n. Usually this would be plotted as a step-function showing
the proportions (0), 1/n, 2/n, . . . , 1 against y(1), . . . , y(n), where y(i) is the ith order
statistic of Y . The empirical distribution function so constructed is only an esti-
mate of Fy∗ . Sampling effects will tend to shift this empirical distribution function
around, and we need to take this into account when determining our uncertainty
for quantiles such as the 90th percentile. A simple way to do this is to invert the
Kolmogorov-Smirnov (KS) test, as described in Hollander and Wolfe (1999, §11.5
and Table A.38). This gives random lower and upper bounds defining a confidence
band with the property

Pr
[
`(v;Y ) ≤ Fy∗(v) ≤ u(v;Y ), for all v

]
≥ 1− α (1.4)

where Y denotes an iid sample of size n from Fy∗ , and 1−α is the confidence level,
typically 95%. Asymptotically, say n ≥ 40, the 95% confidence band of the under-
lying distribution function is ±1.36/

√
n vertically about the empirical distribution

function; as this is a vertical band, there is no necessity for the inferred horizontal
intervals to be finite, particularly in the tails. A note of caution: a 95% confidence is
not the same as a 95% probability that our observed interval

[
`(v, Y ), u(v, Y )

]
con-

tains Fy∗(v). ‘Confidence’ is a property of the random interval before Y is observed;
see, e.g., DeGroot and Schervish (2002, sec. 7.5) for further clarification.

An important feature of the KS approach is that it gives us a consistent set
of horizontal CIs for any collection of percentiles; however, it is conservative for a
given percentile, so that the coverage of the horizontal interval with α = 0.05 is
greater than 95%. For a given percentile we can also compute a point estimate and
a horizontal interval directly, for example using the method of Harrell and Davis
(1982) (HD). Such an interval will tend to be narrower, but it is more sensitive to
the shape of the underlying distribution for, say, n ≤ 30.

We illustrate the results of a MC inference using the climate sensitivity of
HadSM3: an atmospheric model coupled to a mixed-layer ocean, which combines
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Inference In Ensemble Experiments 3

both continuous and discrete inputs. Our analysis of two ensembles from this model
(Murphy et al., 2004; Stainforth et al., 2005) is described in Rougier et al. (2006).
As part of our analysis we construct a statistical emulator of HadSM3. Emulators
will be described in more detail in §3. For the time being we note that one outcome
of constructing an emulator is a mean function, and this mean function can stand-
in for the model itself in applications where the model would be too expensive to
evaluate. Therefore in this section and the next we use the mean function from the
emulator in place of HadSM3 itself, to illustrate the effect of different numbers of
evaluations in a MC uncertainty analysis.

In this section we take Fx∗ to be independent across components (subject to
restrictions discussed in §2), uniform in the continuous inputs, and equally-probable
across levels in the discrete components. As a representation of expert judgement
about the uncertain model-inputs this is not a particularly appealing choice of
distribution (we will investigate another choice in §2), but it is, at the moment,
a common choice among climate scientists. Assigning probability distributions to
quantities such as model-inputs is discussed in O’Hagan et al. (2006).

Figure 1 shows the result of an experiment with n = 30, 90, 180, and 300
evaluations of the mean function: these evaluations were nested in the sense that
the larger samples are extensions of the smaller ones. So we are addressing the
question: what happens if we stop at 30? at 90? and so on. With fewer than 200
evaluations, already a large number for many ensemble experiments using climate
models, we cannot get an upper value on the 95% CI of the 90th percentile of
climate sensitivity using the KS method, because this is too far into the upper tail
of the distribution. The HD 95% CIs for the 90th percentile are shown as round
brackets in Figure 1.

Finally, a comment on the sensitivity of the MC approach to the number of
model-inputs. It is sometimes averred that MC integration is unaffected by the
number of inputs, and the KS result appears to support this. However, our uncer-
tainty about the model output is expressed horizontally, not vertically. When we
translate the vertical KS band into a horizontal interval, e.g., for the 90th percentile,
two factors are important: the height of the band, and the slope of the distribution
function around the 90th percentile. The slope of the distribution function often
does depend on the number of inputs. Suppose g(·) is a climate model with a crude
cloud scheme, and h(·, ·) is a model with a complicated cloud scheme which requires
additional inputs w. If the cloud scheme is important, then, typically, h(x∗,w∗)
will be more uncertain than g(x∗); the slope of the distribution function around
the 90th percentile will be shallower, and uncertainty about the 90th percentile will
be larger.

2. Importance sampling

A major drawback of the MC approach is that it commits us to a particular sampling
distribution on the model-inputs x∗. Often x∗ will represent some kind of ‘correct’
or ‘best’ input (Goldstein and Rougier, 2004; Rougier, 2007). But it is clear that
specifying Fx∗ involves a choice: there is no obvious ‘right’ candidate. It is an
undoubted weakness of any inferential calculation if we cannot try different choices
of Fx∗ , to examine the sensitivity of our conclusions to choices about which there
is no consensus.
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Figure 1. Climate sensitivity (K), uniform prior. Monte Carlo estimated distribution func-
tions from a single ensemble, using four different sizes. The shaded polygons indicate the
95% confidence band for the distribution function, using the Kolmogorov-Smirnov ap-
proach. On the horizontal axis, the open square and square brackets indicate the point
estimate and KS 95% confidence interval (CI) for the 90th percentile; the upper value
is undefined in the first three cases. The open circle and round brackets indicate the
Harrell-Davis point estimate and asymptotic 95% CI for the 90th percentile. For refer-
ence, the true 90th percentile is 4.3K.

With MC inference we can in fact try different distributions for Fx∗ , even after
having generated Y , using Importance Sampling (IS); see, e.g., Robert and Casella
(1999, §3.3). For technical reasons we must introduce the additional requirements
that Fx∗ factorises into a part with only continuous inputs, and the remainder,
i.e. Fx∗(x) = Fc∗(c)Fr∗(r) where x = (c, r) and c are all continuous. Suppose we
want to investigate the distribution of y after sampling from F ′

x∗ , where we require
F ′

x∗(x) = F ′
c∗(c)Fr∗(r); i.e., only the distribution for c is different. We refer to Fx∗

as the proposal distribution and F ′
x∗ as the target distribution. Providing that fc∗

is non-zero wherever f ′c∗ is non-zero, where a small f denotes a probability density
function, we can write (1.1) as

F ′
y∗(v) = EF ′

x∗

[
I(g(x∗) ≤ v)

]
= EFx∗

[
I(g(x∗) ≤ v) w(x)

]
(2.1)

where w(x) , f ′c∗(c)/fc∗(c). This relation follows after introducing the value 1 ≡
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Inference In Ensemble Experiments 5

fc∗(c)/fc∗(c) into (1.2). Eq. (2.1) gives rise to the MC estimator

F ′
y∗(v) ≈ n−1

n∑
i=1

I(yi ≤ v) wi (2.2)

where wi , w
(
x(i)

)
; this calculation is based on our original sample (Y ;X), where

x was sampled from Fx∗ . The sum of the weights should be approximately n, and
in this case it is acceptable to normalise them, so that

F ′
y∗(v) ≈

n∑
i=1

I(yi ≤ v) w̃i (2.3)

where w̃i , wi/
( ∑n

j=1 wj

)
. We can plot our estimate of the distribution function

as a step-function showing the cumulative weights (0), w̃(1), w̃(1) + w̃(2), . . . against
y(1), y(2), . . . . This is a generalisation of the original case, where we would have
w̃(i) = 1/n.

The problem with IS is that when n is small the proposal distribution can, by
chance, easily miss the region of high probability in the target, particularly when the
two distributions are not very similar. IS estimates can therefore be very uncertain.
Liu (2001, pp. 35–36) shows that the variance of an IS estimator is approximately
proportional to one plus the variance of the weights. A useful diagnostic that reflects
this is the Effective Sample Size (ESS)

ESS ,

{
n∑

i=1

(w̃i)2
}−1

(2.4)

which is 1 when all the weight is concentrated into a single evaluation, and n if it
is spread equally across all n evaluations.

Our illustration demonstrates the need for the additional technical requirements
for IS. The HadSM3 model has eighteen continuous inputs and thirteen discrete
ones. However, four of the continuous inputs are contingent on the discrete inputs;
e.g, the two continuous convective anvil parameters (ANVS and ANVU) will be effec-
tively zero when convective anvils are switched off (ANV = Off); see Gregory (1999).
These four continuous inputs cannot be taken as probabilistically independent of
the discrete ones. Therefore the largest collection of continuous inputs in our fac-
torisation of x is fourteen. Suppose we decided to replace the uniform marginal
distribution for each of these inputs with a symmetric triangular distribution over
the same interval. This seems like a plausible description of the fact that central
values of the parameters are judged more likely to be ‘correct’ than extreme ones. If
we do this, however, the ratio w(x) involves the fourteenth power of the univariate
ratio of a triangular to a uniform. This illustrates that there can be an additional
dimensional effect in IS, because small marginal changes in the distribution of each
component of c∗ become magnified. In the case of our sample with n = 300, the
sum of the weights is 128.3 (not close to 300), and the ESS is only 22. IS cannot
be considered reliable in this case.

To show that IS can be useful, we also consider a choice for F ′
x∗ much closer

to our Fx∗ , namely a distribution in which just five of the independent continuous
variables have triangular distributions (VF1, CT, CW, CFS, and ENT). In this case the
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Figure 2. Climate sensitivity (K), triangular distribution for five continuous model-inputs.
Computed from the original uniform sample using Importance Sampling. See caption to
Figure 1 for details. The KS 95% confidence bands are based on the ESS, see eq. (2.4).
For reference, the true 90th percentile is 3.9K.

sum of the weights (n = 300) is 267.7 and the ESS is 69; these values are better
than before, but still suggest caution. Figure 2 shows the result of this choice for
F ′

x∗ for n = 180 and n = 300. Large individual weights show up as vertical segments
in the empirical distribution function. KS confidence bands are also shown, based
on the ESS. The HD estimator does not generalise to this case.

Therefore IS is useful if we want to start with a particular choice for Fx∗ and
then look at the effect of small perturbations, but it cannot help us if we are quite
uncertain about Fx∗ , and would like to try out a number of possibly quite different
alternatives.

3. Emulators

There are three attractive features of the MC approach. First, it is simple to under-
stand and implement. Second, it is sequential, so we can easily add more evaluations
if required (other integration methods, like Gaussian quadrature, do not have this
feature). Third, it is relatively easy to compute a measure of uncertainty about our
estimates. One drawback, as discussed in the previous section, is the inflexibility of
being committed to a given distribution Fx∗ , which is only partially mitigated by
IS.

A bigger drawback, though, is that MC is expensive, in terms of the number of
evaluations required for a given precision. This will not matter if we have a model
with a small number of uncertain inputs that evaluates extremely fast: we might as
well use MC and be done with it. But in ensemble experiments with climate models
typically the opposite situation prevails: we have a limited number of evaluations
of a model with a large input-space. The basis of MC’s simplicity is that it assumes
nothing about the model: the evaluations are simply points in the output-space, and
x is discarded. We can do better if we are prepared to exploit the structure in our
ensemble, notably the judgement that g(x′) is predictable from g(x) when x and x′

are not too far apart. In this case we do not discard x, but incorporate it into our
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Inference In Ensemble Experiments 7

inference. We do this by constructing an emulator. In many experiments, emulators
may be the only means of deriving useful probabilistic information, because n is
simply too small to be effective in an MC approach.

An emulator is a stochastic representation of a (usually deterministic) complex
function. In our case, the emulator is a statistical framework that allows us to
compute the distribution function

Fg(x)(v) , Pr
[
g(x) ≤ v | Y ;X

]
, (3.1)

where the model g(·) is now the uncertain quantity on the righthand side, and our
information about g(·) is conditional on our observations of the model’s behaviour,
i.e. on the ensemble. In other words, for any input value x the emulator tells us
a probability for the model-output g(x) being no greater than v, based on the
information in (Y ;X). O’Hagan (2006) provides an introduction to emulators. One
simple approach to constructing an emulator is to use a Bayesian treatment of
regression, where the regressors are linear and non-linear functions of the model-
inputs. This is effectively the approach used in our illustration.

In our uncertainty analysis the emulator allows us to focus on what we actually
can compute, rather than what we aspire to compute. We aspire to compute the
distribution function

Fy∗(v) , Pr
[
y∗ ≤ v | g(·)

]
(3.2)

where the conditioning on g(·) makes explicit what was previously implicit, namely
that on the righthand side of (1.1) we were treating the model as though it were
known. What we can actually compute, though, with our n evaluations, is

F̂y∗(v) , Pr[y∗ ≤ v | Y ;X] = EFx∗

[
Fg(x∗)(v)

]
, (3.3)

where we choose to treat x∗ and g(·) as probabilistically independent. Comparing
(3.3) with (1.2), the emulator distribution function has taken the place of the indi-
cator function I(·), because with our finite ensemble it is no longer clear-cut that
g(x) ≤ v, for arbitrarily-chosen x. The quid pro quo of this realism, though, is
the need for a statistical framework that allows us to infer the distribution function
Fg(x) from the ensemble (Y ;X). This is both an opportunity and a burden. The sta-
tistical framework allows us to incorporate additional information from modellers
and from other ensembles; for example, how smooth is the model? and which are
the most important model-inputs? But this requires extra work, both in eliciting
judgements, and in the painstaking but crucial task of diagnostic assessment.

Staying with MC integration to compute (3.3), we approximate Fy∗(v) as

F̂m
y∗(v) , m−1

m∑
j=1

Fg(x(j))(v) where x(j) iid∼ Fx∗ . (3.4)

The major difference here is that we do not evaluate the model at each x(j), we
simply evaluate the emulator distribution function, which is often more-or-less cost-
less. Thus m can be made as large as we need to ensure that there is no sampling
uncertainty in the resulting empirical distribution function: it is a precise estimate
of F̂y∗ . From a practical point of view, the emulator separates learning about the
model from using the model to makes inferences. The purpose of the ensemble is
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8 J.C. Rougier and D.M.H. Sexton

to learn about the model. Once we have distilled the ensemble into the emulator
it has no additional value, and the emulator takes the place of the model in our
inference. Thus the calculation of F̂y∗(v) can be repeated for any choice of Fx∗ , so
we can easily compare the effects of, say, a uniform or a triangular distribution.

The MC approach and the emulator approach have two quite different sources
of uncertainty about the distribution for y∗, but they both arise as a consequence of
us only having n evaluations in the ensemble. In the MC approach our uncertainty
about Fy∗ comes from our failure to compute the integral exactly due to limited n,
and is summarised in terms of the sampling properties of the empirical distribution
function Fn

y∗ . In the emulator approach we do not approximate Fy∗ , instead we
compute F̂y∗ exactly. By using expert judgements and carefully-chosen evaluations
we expect that F̂y∗ will be a better approximation than Fn

y∗ , but this will depend
on the model. If g(·) has structure that we can exploit, for example being smooth,
or having only a limited number of important model-inputs, then we expect the
emulator to do better, and in this way to justify the extra (human) costs involved.
For example, if x represents the initial value of the state vector in a large climate
model, then it is a common judgement that g(x′) may not be predictable from g(x)
even when x and x′ are quite close; in the language of spatial statistics, the correla-
tion length for initial conditions is short. This lack of predictability will undermine
the efficacy of an emulator, and in this case the MC approach for initial conditions
has much to recommend it. By way of contrast, the correlation length for model-
parameters is likely to be much greater, and so a perturbed-physics experiment is
a natural candidate for an emulator.

To illustrate, we present some results using an emulator for climate sensitivity
based on an ensemble of 297 evaluations of HadSM3. The way in which the evalu-
ations in our X were chosen is outlined in §4. Crucially, however, there is no way
we could interpret X as the outcome of some sampling exercise, so MC was never
an option. As a general point pertinent to many ensemble experiments, if the eval-
uations in X are not sampled from some specific distribution, or do not conform to
the abscissae of an integration scheme, then using them to construct an emulator
is the only option for probabilistic inference with uncertain model-inputs.

Figure 3 shows two quite different choices for the distribution of x∗: (A) uniform
distribution in all of the continuous model-inputs; (B) triangular. It also shows
two other choices: (C), like (A) but with the reciprocal of the entrainment rate
being uniform; and (D), like (B) but with the reciprocal being triangular; these are
included in response to the ongoing debate about whether the entrainment rate or
its reciprocal is the more natural parameterisation. A value of m = 104 in (3.4)
was sufficient to make these estimated distribution functions precise. Treated as a
simple sensitivity analysis, this illustration shows that the choice of prior for x∗

has an impact of about 2K on the 90th percentile. In a more sophisticated analysis,
in which the prior for x∗ is calibrated with observations, the choice of prior is not
likely to be as influential.

4. Experimental design

Once we have liberated the choice of X from any particular sampling scheme, we
can choose our evaluations to learn about g(·) in an informative way. We refer
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Figure 3. HadSM3 climate sensitivity (K), conditional on an ensemble of 297 evaluations,
for four different choices of distribution for Fx∗ (see text in §3). On the horizontal axis of
the lefthand panel the filled squares indicate the four 90th percentiles.

to this as a Designed ensemble, as the general approach is informed by Bayesian
Experimental Design (Chaloner and Verdinelli, 1995); more detailed information
and further references can be found in Koehler and Owen (1996) and Santner et al.
(2003). We suggest the following three stages.

1. Screening runs. The initial set of evaluations is designed to pick-out basic
structure in the model, such as identifying the important or active model-
inputs, plus some indication of the nature of the model-response to these
inputs (e.g., linear, quadratic, linear in the log). A maximin latin hypercube
can be an effective choice. Where we have strong prior information about
which inputs are important (often the case with climate models), we may
use such a design on the less important model-inputs, and a more structured
design in the subspace of active inputs, as described next.

2. Interactions. In climate models we expect interactions between model-inputs
to be important in determining the model-outputs. With a large number of
model-inputs we cannot expect to explore all possible interactions, even if we
limit ourselves to two-way effects. Therefore we explore interactions initially
in the active inputs. This second set of evaluations could follow a standard
experimental design such as a fractionated factorial, which allows us to iden-
tify low-order interactions (two- and three-way, for example). Another option
which combines stages (1) and (2) is to generate a screening design, and
then assign the likely active inputs to the best subset in the design, e.g., the
D-optimal subset.

3. Sequential. After the first two stages we should have enough evaluations to
build a useful emulator. In the third stage we can use this emulator to select
further evaluations. The simplest approach is to put additional evaluations
into regions of the model-input space for which the predictive uncertainty, i.e.
Sd[g(x) | Y ;X], is currently high. Such evaluations will tend quite naturally
to avoid the previous evaluations in X.
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10 J.C. Rougier and D.M.H. Sexton

Where we have calibration data we would expect to iterate these stages, refocusing
our approach as these data rule out regions of the model-input space.

Our HadSM3 ensemble comprises several different sets of evaluations. Initially,
there were single-parameter perturbations in each model-input, and a very limited
number of multiple-parameter perturbations, as used in Murphy et al. (2004). Since
that time we have augmented the ensemble with batches of evaluations designed to
allow us to learn about the HadSM3 model (see Webb et al., 2006, for details). We
have adjusted the balance of the ensemble as a whole so that no model-input values
were particularly over-represented. We have also filled-in regions identified with the
major sub-processes (using fractional factorials and carefully-selected latin hyper-
cubes) to make sure that we have information on low-order interactions between
model-inputs within each sub-process.

5. Conclusion

Simple MC inference, for which the ensemble represents a random sample from
some specified distribution over model-inputs, is a very robust approach, making
no assumptions about the form of the underlying climate model. This is both its
strength (generality) and its weakness (inefficiency, inflexibility). The alternative
approach is to tune our inference and calculations to our particular climate model.
Emulators provide one means for doing this, most clearly seen in the way in which
they permit us to do n carefully-chosen evaluations of the model rather than n
random evaluations of the model. Emulators also allow us to incorporate expert
judgement into their prior specification, although this is less important if we have
a reasonable number of evaluations from the Screening and Interaction stages out-
lined in §4. By separating the ensemble from the inference, emulators also allow
us to perform a wide range of inferential calculations over any number of different
probabilistic choices, which is valuable where there is no consensus about what an
appropriate choice might be.

J.C. Rougier has been partly funded by NERC, under the RAPID Directed Programme.
We would like to thank Michael Goldstein, Peter Craig, Jeremy Oakley, James Annan,
and the referees for very helpful observations.
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