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1 Introduction

It is very important to understand the behaviour of avalanches: how, for
example, the speed of an avalanche depends upon the inclination of the
slope, on the snow density, and on the snow-surface temperature. One
source of data is from avalanches themselves but, for obvious reasons, these
opportunistic observations are hard to come by. Experiments provide a
second source of data. In this paper we focus on chute experiments carried
out at the Swiss Federal Institute for Snow and Avalanche Research (SLF).

These experiments take place under different environmental conditions,
partly by design and partly through circumstance. We would like to extrap-
olate from the experiments we have, to learn about snow velocities across a
range of plausible environmental conditions. For this purpose we introduce
a mathematical model which expresses the velocity profile as a function of
these conditions. The general idea is to use the mathematical model to
construct a joint probability distribution over the experiments we have and
those environmental conditions we would like to predict, and then the ob-
servations are assimilated into the prediction by probabilistic conditioning.

The statistical field of Computer Experiments is concerned with combin-
ing model evaluations and observations. A particular challenge in this field
is to account for the fact that some of the model parameters are imperfectly
known, and that the model itself is imperfect (Kennedy and O’Hagan, 2001;
Craig et al., 2001; Goldstein and Rougier, 2004, 2008). This challenge be-
comes more acute when the model-outputs and the system behaviour are
multivariate. In our application, for example, the model output is func-
tional, and the system is observed at a discrete set of abscissae (heights).
But our application also introduces a further complication: variations in the
environmental conditions. Thinking of these as ‘treatments’, the method-
ological contribution of this paper is to show how treatments can be included
in a computer experiment, taking account of the fact that the treatment can
affect all aspects of the statistical model that links the model parameters,
the model evaluations, the system, and the system observations. A second
statistical contribution is to demonstrate a detailed elicitation, including
validation, for a complex physical process.

The outline of the paper is as follows. Section 2 describes the back-
ground to the experiments, and the mathematical model we adopt. Sec-
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Figure 1: Environmental conditions in the ten experiments (labelled
A, . . . , J), indexed by snow density (kg/m3) and snow-surface temperature
(◦C).

tion 3 describes the statistical framework that we use to combine model
evaluations and observations, over a range of different environmental con-
ditions. Section 4 describes our choice of inferential treatment, the Bayes
linear approach, and the simplifications that follow from it. Sections 5 and
6 describe our statistical modelling choices, and the results of our analysis,
including diagnostic assessment. Section 7 concludes.

2 The experiments and the physical model

In this section we present a summary of the chute and the experiments, and
describe the notational modifications we have made to the physical model. A
more detailed account can be found in Kern et al. (2004), and the references
below.

The chute and the experiments. Our experiments were performed on
the SLF snow chute at Weissfluhjoch, which is 34 m long and 2.5 m wide.
In each experiment, 8.4 m3 of snow was released from a hopper at the top
of the chute. The snow then accelerated along a 10 m section, at the end
of which it was approximately in steady state. Downslope velocities of the
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Figure 2: Those experiments with low snow-surface temperatures. Tss:
snow-surface temperature (◦C); Ta: atmospheric temperature (◦C); rho:
snow density (kg/m3). The dots indicate the measurements and the error
bars ±2 standard deviations; the measurements have been interpolated to
make the velocity profile easier to see.
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Figure 3: Those experiments with high snow-surface temperatures. See the
caption to Figure 2 for details.

5



flow were measured by an optical velocity sensor array placed in a half
wedge at the centreline of the chute. The velocity sensors were placed at 8
equidistant surface-normal elevations in the range between 0 and 0.089 m.
From the time-series of the velocity sensors, time-averaged velocity profiles
were extracted, along with a measure of uncertainty.

For our analysis we use ten experiments which were performed under
different environmental conditions, indexed by the snow density ρ, the am-
bient air temperature Ta and the snow-surface temperature Tss. For the
snow and air temperatures, we use measurements recorded by an automatic
weather station at the nearby Weisfluhjoch experimental site. The environ-
mental conditions for the ten experiments are summarised in Figure 1, and
the observations are given in Figures 2 and 3.

For a detailed description of the measurement setup, the working prin-
ciple of the optical velocity sensors, and a discussion of the systematic mea-
surement errors, see Tiefenbacher and Kern (2004), Kern et al. (2004), and
McElwaine and Tiefenbacher (2005).

The Herschel-Bulkley model. Observations on flowing avalanches (Dent
et al., 1997; Sovilla et al., 2008) and from chute experiments suggest that the
flow of snow is characterised by a relatively thick layer where the shear rates
are low or even zero. This so-called plug-layer travels on a comparatively
thin shear-layer. Basal sliding may occur in this shear-layer, depending on
the environmental conditions. The simplest rheology which is able to repro-
duce such a combination of solid- and fluid-like behaviour is the Bingham
rheology (Bingham, 1922; Oldroyd, 1947). However, Kern et al. (2004) show
that qualitatively better fits can be obtained using a generalised Bingham
rheology, the so-called Herschel-Bulkley model (see, e.g., Barnes et al., 1989).

The equations of the Herschel-Bulkley model, adapted for our purposes,
are presented in Figure 4, with a simple schematic of the main features in
Figure 5. It is described in detail in Kern et al. (2004); here we outline the
adaptation we have made relative to this description. Our objective is to
identify a set of model parameters about which we are uncertain, and for
which we can specify a marginal distribution. The uncertain parameters in
the original model are: v0, denoting basal slip velocity (m); τc, the stress at
zero shear (Pa); α, a unitless stress coefficient; and K, which enters into the
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stress equation for positive shear:

stress = τc + K

(
dv

dz

)α dv

dz
> 0, (1)

where v(z) is the velocity profile at height z. K is a complicated quantity
which has units that depend on α. This makes it hard to elicit K: it would
be simpler if we could decouple K from α, in such a way that we would be
comfortable treating these two quantities as probabilistically independent.
Therefore we reparameterise the stress relationship as

stress = τc

[
1 +

(
tc

dv

dz

)α] dv

dz
> 0, (2)

where tc has units of time (seconds). According to (2), tc = (K/τc)1/α, and
tc replaces K as our fourth uncertain model parameter.

3 Outline of the statistical inference

3.1 General features

The experimental conditions at the point where the experiment is conducted
are referred to as the treatment. We use ‘treatment’ to denote both the for-
mal variables in the experiment, and also the concomicant variables that
can be measured prior to the experiment. Partly this is for simplicity, but it
also reflects the lack of a clear-cut distinction between the two. Some treat-
ment variables are under the control of the experimenter, such as the chute
angle. Others are determined by the environment, such as the temperature
and the temperature history. Others fall somewhere in-between these two,
such as the snow density. What identifies the treatment is that it is known
at the point where the experiment is conducted, and it must be specified in
order for the outcome of any experiment to be predicted. We denote the
treatment as m; in our case

m = (ρ, Tss) ,

where ρ is the snow density and Tss is snow-surface temperature; we also
have information atmospheric temperature but we have not used it in this
analysis. We might also consider θ, the inclination, to be a treatment vari-
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The Herschel-Bulkley Model

The velocity profile has the form:

v(z) =

vh + (v0 − vh)
(
1− z

h

) 1+α
α 0 ≤ z < h

vh z ≥ h,
(HB-a)

where

vh = v0 +
h

tc

α

1 + α

(
h

H − h

)1/α

(HB-b)

and h solves

τc = (H − h)gρ sin θ (HB-c)

subject to h < H.

Notation

z Height ordinate (m) v(z) Velocity (m/s)
h Height to plug-layer (m) vh plug-layer velocity

Treated as known

θ Inclination (32◦) g Acceleration (9.8 m/s2)
H Height to top of flow (0.4 m)

Environmental variables

ρ Snow density (kg/m3) Tss Snow-surface temperature (◦C)

Uncertain model parameters

v0 Basal velocity (m/s) α Stress coefficient
τc Stress (Pa) tc Time constant (s)

(the variable Tss does not appear explicitly in the model).

Figure 4: Velocity profile of a steady 2D Herschel-Bulkley flow of snow. Our
alterations to the standard notation are described in Section 2.
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Figure 5: A simple schematic of a typical velocity profile of steady Herschel-
Bulkley flow.

able, but it does not vary in our experiments.
Our prediction for the velocity profile under any treatment takes the

form of a function relating velocity to height. In this case height is termed
an index variable, because it indexes the model output. Denoting height as
z, our object is to predict v(m, z), the velocity of the snow at height z, in
a large chute under treatment m. We have three sources of information.
First, we have the outcome of experiments on large chutes, for a variety
of treatments. These experimental results include measurement error, and
are distinguished from the true results by writing vobs(m, z). We have ten
experiments, and for simplicity we will suppose that we record velocities at
the same eight heights for each experiment—in fact not all the heights were
recorded for every experiment: we make this simplification purely to avoid
an extra layer of subscripts. Therefore our observations comprise the matrix

V obs =


vobs(m1, z1) . . . vobs(m1, z8)

...
. . .

...
vobs(m10, z1) . . . vobs(m10, z8)

 (3)

a matrix in which the rows correspond to the treatments and the columns
to the heights of the index variable.

Our second source of information is evaluations of a physical model,
namely the Herschel-Bulkley (HB) model described in Figure 4. This model
can be seen as a function mapping (m, z) into a scalar output. But there will
be a further set of inputs, namely those model parameters about which we
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are uncertain. This uncertainty has two sources. First, the model may con-
tain empirical relationships that stand in for physics we do not understand,
or which we choose not to represent fully. These empirical relationships may
have uncertain coefficients. Second, deficiencies in the model compromise
the interpretation of the model’s parameters, even those with well-defined
physical meanings. For example, the value of shear stress in actual snow in
the chute may not be the best value to use for shear stress in the model.
Therefore, although we are guided by the physical interpretation of the pa-
rameters, we do not necessarily want to fix them at their physical values.
These uncertain parameters are denoted x,

x = (v0, τc, α, tc) .

The model output is then denoted g(x,m, z).
Our third source of information is our judgements about the physical

model, the actual behaviour of snow in the chute, the observations, and
the relationships between them. Specifying these judgements occurs in two
stages: first we construct a joint statistical model over all uncertain and
observed quantities, describing our conditional independence choices. Then
we quantify the marginal and conditional distributions that occur in this
statistical model. Our choices will be informed by the physics of snow in
large chutes, by the feasibility of the elicitation, and by the tractability of
the resulting statistical inference. In this respect constructing a statistical
model is no different from the process of constructing a physical model.

3.2 Statistical framework

For clarity, we start by describing a statistical framework for a single treat-
ment and a single height, dropping m and z from the notation, and writing
g(x) for the physical model, v for the actual value, and vobs for the observa-
tion. The standard approach to constructing a joint statistical framework is
to assert the existence of a ‘best’ value of the model parameters, denoted x∗

(Goldstein and Rougier, 2006; Rougier, 2007). Then we link the evaluations
of the physical model and the actual system behaviour through the model
evaluated at this ‘best’ input:

x∗ g // v // vobs (4)
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where the only simplification we have made in the joint structure is to choose
vobs⊥⊥x∗ | v, a completely standard and uncontroversial choice. The super-
script on the edge from x∗ to v indicates the ‘location’ of the HB model in
the inference.

The first edge represents our statistical model of the discrepancy between
the model and reality: a typical form of this conditional distribution might
be

π(v | x∗) = ϕ
(
v; g(x∗), σ2(x∗)

)
(5)

where ϕ is the Gaussian density function, and we specify the variance σ2(x)
as an explicit function of the model parameters. A common simplification
in (5) is to make σ2(x) invariant to x, i.e. set σ2(x) = σ2, a scalar. A
regrettable further simplification is to set σ2 = 0, which asserts that the
model has no structural error, and that it is only uncertainty about x∗ that
prevents us from performing a perfect evaluation. This, unfortunately, has
been the dominant practice in much applied science, where practitioners
have either not been aware that it is possible to incorporate structural error
into their analysis, or have been reluctant to quantify it. This reluctance
to quantify can also be seen in the choice of marginal distribution π(x∗),
which is often taken to be rectangular with specified limits. This class of
distribution is supposed, mistakenly, to be the ‘neutral’ choice.

The second edge represents our statistical model of the measurement
processes: a typical form for this distribution might be

π(vobs | v) = ϕ
(
vobs; v, τ2

)
(6)

where for simplicity we treat measurement error as invariant to flow speed,
and specify the observation error in terms of a standard deviation τ .

Multiple heights. Generalising from one value of the index variable height
to a collection of heights presents no conceptual problems. Write (4) as

x∗ g // v // vobs (7)

where v =
(
v(z1), . . . v(z8)

)
and vobs =

(
vobs(z1), . . . , vobs(z8)

)
. The scalar

variance function σ2(x) is replaced by a more general relationship such as

Cov
(
v(zj), v(zj′) | x∗) = σ(x∗, zj)× σ(x∗, zj′)× κz(zj , zj′), (8)
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where κz(·) is a correlation function, and for simplicity we treat the cor-
relation structure as invariant to x∗. We can use σ(x, z) to describe our
judgements of how the physical model’s performance varies according to
both x and z. For example, the HB velocity profile comprises two parts,
one for heights below the shear layer height h, and a much simpler (vertical)
part for heights equal to or above h, where h is a known function of x (see
Figure 4). If we judge the simpler model more likely to be in error, then our
σ(x, z) will be a function of both x and z.

In a similar way, the scalar measurement error variance τ2 is replaced
by the matrix T . We need to include common sources of variation in the
off-diagonal elements of T . The dominant source of these is measurements
made by the same instrument, which might have a bias. In our large chute,
though, there is a different instrument at each height, so this is not an issue.
However, the instruments are identical, and so there might be a common
source of variation from a fault that is particular to instruments of this
general type.

3.3 Including treatments

The purpose of including treatments in our framework and in our exper-
iments is to allow us to predict the behaviour of snow in a chute under
environmental conditions we have not observed. For this to be possible,
we must believe that there is some relationship between v(m) and v(m′)
where m′ is not dissimilar to m, so that an experiment under treatment m

is informative about what happens under m′.

Explicit single treatment. We start by including the treatment explic-
itly in our statistical model for a single treatment:

x∗ g // v(m) // vobs

m

ccFFFFFFFFF

OO ::vvvvvvvvvv

(9)

where the box around m indicates that it is specified, not uncertain. This
indicates that our judgements about x∗, about our physical model’s discrep-
ancy, and about the observation error might all depend on the treatment.

When we introduce multiple treatments, though, we are faced with a
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problem. We would like to abstract the best value of the model param-
eters from the treatment, so that this best value becomes a repository of
information about the physical model that can be informed by a range of
experiments at different treatments, and can be used to predict the be-
haviour of snow in the chute at new treatments. Standing in the way of
this is the edge from m to x∗. The solution is to propose a higher level of
treatment-invariant model parameters. Formally, we suppose that we can
specify an uncertain vector w∗ with marginal density π(w∗), and a vector-
valued deterministic function x = k(w,m), such that k(w∗,m) has the
distribution π(x∗;m), for all m. This gives

w∗ k // x∗ g // v(m) // vobs(m)

m
k

ccFFFFFFFFF

OO 99rrrrrrrrrr

(10)

Therefore learning about the model parameters is learning about w∗, from
which x∗ is then inferred for particular m. We will illustrate judgements of
this form in section 5.1, for the two model parameters v0 and τc, which will
depend on ρ and Tss, respectively.

Multiple treatments. In order to handle multiple treatments we group
the actual values for snow in the chute together over the set of treatments we
have observed, plus the treatments for which we want to make predictions.
Denote these latter treatments as ma,mb, . . . . We write the collection as

V =



v(m1, z1) . . . v(m1, z8)
...

. . .
...

v(m10, z1) . . . v(m10, z8)

v(ma, z1) . . . v(ma, z8)
v(mb, z1) . . . v(mb, z8)

...
. . .

...


. (11)

In this format, the statistical model over multiple treatments can be written

w∗ g,k // V // V obs (12)
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where the treatments are now internalised in V and V obs. Looking back
to (4), we seem to have come full-circle, with the important difference that
we have had to redefine the model-parameters to ensure that they can be
expressed independently of the treatments.

With this modification, the statistical modelling of the two conditional
distributions can be extended quite naturally from the single-treatment. For
the discrepancy we might take the collection

{
v(mi, zj) |w∗} to be jointly

Gaussian with mean g
(
k(w∗,mi),mi, zj

)
and variance function

Cov
(
v(mi, zj), v(mi′ , zj′) |w∗) =

σ
(
k(w∗,mi),mi, zj

)
× σ

(
k(w∗,mi′),mi′ , zj′

)
×

κm(mi,mi′)× κz(zj , zj′) (13)

where κm(·) and κz(·) are correlation functions, and for simplicity we take
the joint correlation structure as invariant to x∗ and separable in the treat-
ment variables and the index variable.

For the observation error, we might take the collection
{
vobs(mi, zj) | V

}
to be jointly Gaussian, and simplify by treating v(mi) as sufficient for
vobs(mi) for each treatment, with mean v(mi), and variance function

Cov
(
vobs(mi, zj), vobs(mi′ , zj′) | V

)
=

Tjj′ i = i′

0 otherwise.
(14)

We summarise the statistical requirements described in this section, un-
der the simplifications we have made. Note that the simplifications are not
critical: we have made them to clarify the presentation, and also because
they seem reasonable in our application and, perhaps, more widely. More
importantly, the Gaussian form of the conditional distributions is not crit-
ical either. In fact, in the following sections we will dispense with it, and
proceed using a Bayes Linear approach.

1. We specify the determinstic function k(·) and the marginal distribution
w∗ so that the inferred marginal distribution of x∗ = k(w∗,m) is
consistent with our judgements about x∗ in treatment m.

2. We quantify our judgement about the discrepancy in our physical
model in terms of the standard deviation function σ(x,m, z), and
the two correlation functions κm(m,m′) and κz(z, z′); see eq. (13).
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3. We quantify our judgements about the measurement errors in our ob-
servations in terms of the variance matrix T ; see eq. (14).

4 Bayes linear inference

Our intention is to predict velocities under treatments we have not observed.
To make this more concrete, in this paper we will predict the velocity for a
range of densities and snow-surface temperatures. If we want to predict on,
say, a 21× 21 grid in these two variables then V will have 10+212 rows and
eight columns. i.e. comprise about 3600 components. Therefore this is quite
a large inference. At the same time, though, we are aware that our data,
although the best of their kind, are noisy, and our physical model is rather
simple. Therefore our judgements will play a large part in our predictions.
This prioritises diagnostic information. It also makes us cautious about
putting more structure in our judgements than we would willingly specify.
For these reasons we strongly favour a Bayes linear analysis. The Bayes
linear approach is outlined in Goldstein (1999) and described in detail in
Goldstein and Wooff (2007); it has proved very powerful in large computer
experiments (Craig et al., 1997, 2001; Goldstein and Rougier, 2004, 2006,
2008). It also underpins standard techniques such as Dynamic Linear Models
(West and Harrison, 1997).

In the Bayes linear approach, expectation is taken as primitive and judge-
ments are specified in terms of the mean and variance of a collection of
quantities. Therefore we are not required to make higher-order specifica-
tions, in contrast to the fully probabilistic approach. The resulting updating
equations have a simple form that allows rapid computation, including of
diagnostic information. Our predictions take the form of a mean vector and
a variance matrix over the product of our specified treatments ma,mb, . . .

and the abscissae of the velocity profile.
To implement the Bayes linear approach for prediction we must specify a

mean and variance over the collection {V, V obs}. If we want to do model cali-
bration we must also include w∗ in that collection. Calibration is more com-
plicated in a Bayes linear framework, because of the strong non-linearities
that can exist between w∗ and V , induced mainly by non-linearities in the
physical model g(·). The Bayes linear approach to calibration is described
in Goldstein and Rougier (2006). In this paper we will focus on prediction,
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using the approach described in Craig et al. (2001).
We can write our statistical model in the general form

V ≡ G∗ + D∗ (15a)

V obs ≡ V + E (15b)

where G∗ is the collection of model evaluations with typical component
g(x∗,mi, zj), D∗ is the collection of discrepancies with typical component

d(x∗,mi, zj) = v(mi, zj)− g(x∗,mi, zj), (15c)

and E is the collection of measurement errors with typical component

e(mi, zj) = vobs(mi, zj)− v(mi, zj). (15d)

We induce a mean and variance on the collection {V, V obs} in terms of our
choices for {G∗, D∗, E}. According to our choices in section 3.1, E⊥⊥{G∗, D∗},
has mean zero, and variance given by (14). D∗ and G∗, however, covary,
because they share a common source of uncertainty, namely x∗. Including
this covariance is a challenge for the Bayes linear approach. We judge that
our purpose is better served by removing the dependence of D∗ on x∗. In
fact, this is the standard approach in computer experiments where, as far as
we are aware, no analysis has yet included the influence of the model param-
eters on the model’s discrepancy, not even in a fully probabilistic approach;
see, e.g., the standard set-up in Kennedy and O’Hagan (2001) and the dis-
cussion in Rougier (2007). In our statistical model this means removing the
effect of x from the standard deviation function σ(x,m, z), used in (13); we
will show in section 5.3 how the lack of x can be partially mitigated through
the creative use of m. Now we have E ⊥⊥G∗ ⊥⊥D, where we have dropped
the ‘∗’ on D.

With this simplification we can write the joint mean and variance as

E

(
V

V obs

)
=

(
µ∗

Hµ∗

)
(16a)

Var

(
V

V obs

)
=

(
Ξ ΞHT

HΞ HΞHT + Var(E)

)
(16b)
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where H is the incidence matrix, which picks out the observations, Ξ =
Var(V ) = Σ∗+Var(D), and µ∗ and Σ∗ are the mean and variance of G∗. This
still leaves us to determine the mean and variance of G∗. For this purpose
we find it helpful to specify a probability distribution for w∗, and then to
infer µ∗ and Σ∗ using samples drawn from G∗. This is a cheap calculation in
our application because the physical model is quick to evaluate; where the
physical model is expensive we would use an emulator (see, e.g., Craig et al.,
2001; Kennedy and O’Hagan, 2001; O’Hagan, 2006; Higdon et al., 2007;
Rougier, 2008). This approach is not a simple case of estimating µ∗ and Σ∗,
though. Our initial choice for the distribution π(w∗) will be informed by our
judgements, but we are likely to tune this choice in the light of the implied
mean and variance for G∗ and, possibly, to modify the resulting mean and
variance in the light of other judgements. Thus the distribution π(w∗) is a
contrivance that helps us to specify µ∗ and Σ∗, rather than a core part of
our inference.

The scheme for adjusting our mean and variance for V on the basis of
observed value for V obs is described in Goldstein and Wooff (2007), ch. 3.
The updating equations will be familiar because they are also the condition-
ing relations of a multivariate Gaussian distribution. However, as already
explained, we have adopted the Bayes linear approach partly because of our
reluctance to provide fully-probabilistic descriptions of our uncertainty, and
therefore we do not judge (V, V obs) to be Gaussian, and nor will we be using
the extra structure that this would imply in our predictions. For example,
our predictions are explicitly in terms of means, variances, and covariances:
we cannot report quantiles without further restrictions.

5 Statistical modelling and results

5.1 Model parameters

In this subsection we specify w∗, the function k(·), and the marginal dis-
tribution π(w∗), as described in section 3.3. Recall from section 3.1 that
x = (v0, τc, α, tc) and m = (ρ, Tss). The precise manner in which we arrive
at quantified distributions is described in section 5.4. Here we outline our
reasoning and our general statistical framework.

First we consider the dependence of v∗0 on ρ, which appears to be a feature
of our experimental data. For snow in the coexistence regime of snow and
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water at 0◦C, snow density and snow water content are typically positively
related. High water content causes additional basal friction by lubrication-
adhesion effects on the ground, especially if the flow is water-dominated, as
in slush flows (Jaedicke et al., 2008). Compact, dry snow exhibits slightly
less basal friction on dry ground. On the other hand, for low snow densities,
a lower ratio between gravitational forces and basal friction may contribute
to slower basal slip velocities: low snow densities are frequently associated
with a finer (“felty”) structure which may result in a higher effective basal
friction coefficient. We judge that these two effects will probably combine
in a concave relationship between ρ and v∗0 over our range of densities.

Second, we consider the dependence of τc on Tss. Foehn (1998) and
Schweizer (1998) observed that τc depends both on the snow temperature
and on the applied shear rate. For our Herschel-Bulkley flow, τc is the
threshold stress for failure of the plug at z = h where the shear rate dv/dz

vanishes (note that, under our experimental conditions, this transition from
shear flow to plug flow might not be perfectly smooth). That is, we can
use the experimental results for τc under low shear deformation rates, of
the order dv/dz ∼ 10−3s−1. Under these conditions, τc is decreasing in
temperature.

The Appendix outlines a simple approach for quantifying both of these
dependencies in terms of some basic elicitations. In summary, we restrict
the form of the dependence to a quadratic with uncertain coefficients, and
then we constrain the mean and variance of the coefficients. In the case of
the basal slip velocity v∗0, our constraints are (1) E(v∗0; ρ = 250) = 4.6 and
E(v∗0; ρ = 800) = 2.5; (2) extremum at ρ = 400; (3) Pr(concave) = 0.95. In
the case of the shear τ∗c , our constraints are (1) E(τ∗c ;Tss = −15) = 900 and
E(τ∗c ;Tss = −4) = 700; (2) extremum at Tss = 1; (3) Pr(concave) = 0.05.
In each case we have one free statistical parameter with which to tune our
choices. The results are shown in Figure 6, as realisations of the random
functions. In fact, these realisations were our primary tool in setting the
constraints to achieve a distribution of random functions that reflected our
judgements.

Finally, we consider α∗ and t∗c , both of which are strictly positive quan-
tities. In both cases we use Gamma distributions. We fix the means at our
prior best guesses, 2 and 0.03 s−1, respectively. We then specify the shape
and scale parameters to achieve a reasonable description of our uncertainty.
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Figure 6: Realisations of the stochastic relationship between treatment and
the ‘best’ value of the model parameters.

For α we choose shape 16 and scale 2/16 (giving a standard deviation of
1/2), and for tc shape 9 and scale 0.03/9 (std dev. 0.01 s−1).

5.2 Observation error variance matrix

We treat the observation errors as uncorrelated, and use pooled estimates
for the variances, based on whether Tss ≤ −2◦C: there are simple physical
reasons for thinking that the accuracy of the measurements will depend on
temperature. At a snow temperature of 0◦C, snow is in the phase transition
regime. That is, both snow and water are present in the flow. The mea-
surement principle of the velocity sensors is based on a correlation analysis
of signals obtained from infra-red (IR) reflectivity sensors. The quality of
the signal is a function of the water content of the snow: the ambient wa-
ter blurs the signal peaks related to passing snow particles. Moreover, the
transition spectrum of fluid water has a gap in the IR band used for the re-
flectivity measurements which causes the water film between snow particles
and sensor to dampen the signals. For a detailed discussion of this technical
problem, see Guenther (2006). Strictly speaking, fluid water is present only
for Tss = 0◦C. But since Tss was not measured in the snow chute but in
a nearby snowpit, we use the slightly lower value of −2◦C. The estimated
standard deviations are 0.536 m/s for the low temperatures, and 1.670 m/s
for the high temperatures (see Figures 2 and 3).
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5.3 Discrepancy variance matrix

Standard deviation function. We would like to express the standard
deviation of d(x∗,mi, zj), denoted σ(x∗,mi, zj) in general, as a two-level
function of h∗ and z, as explained in section 3.2. From (HB-c),

h = H − τc

gρ sin θ
(17)

and so h∗ depends on both τ∗c ∈ {x∗} and ρ ∈ {m}. However, as explained
in section 4, for tractability we choose to exclude x∗ from σ(·). But since
h is linear in τc and the expectation of τ∗c depends on m, we can express
E(h∗;m) as a function of m. Thus we replace h∗ with its expectation, to
give

σ(m, z) =

σ` z < E(h∗;m)

σu z ≥ E(h∗;m) .
(18)

We choose the values σ` = 1.25 m/s and σu = 1.75 m/s.

Correlation functions. We choose to treat κm(·) as separable in ρ and
Tss, so that

κm(m,m′) = κρ(ρ, ρ′)× κt(Tss, Tss
′) (19)

We use the Matérn correlation function to specify the three correlation func-
tions: each one is parameterised in terms of a range r and a smoothness ν

in the general form

Matérn(d; r, ν) =
1

2ν−1Γ(ν)
(d/r)νB(d/r, ν) (20)

where d is Euclidean distance, and B(·) is the modified Bessel function.
The smoothness ν is the less important parameter: we use 3/2 in each
case, reflecting our judgement that none of the relationships is particularly
smooth. For r we use one quarter of the range for Tss, one sixteenth of
the range for ρ, and one half of the range for z, reflecting our judgement
that the discrepancy is more systematic in z than in the two environmental
variables. Originally we set the r parameter for ρ to be one quarter of the
range (like Tss), but we revised this value downward in the light of diagnostic
information (see section 5.4). Quantifying these correlation lengths is not
easy, but in our case the variance in V is dominated by variance in G∗, and
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so these choices are not critical.

Conditioning at zero height. We make one further modification to the
variance matrix Var(D). One of the model inputs is v0, the basal slip ve-
locity. This is also one of the outputs. We identify this input and output
by conditioning d(m, z) on d(m, 0) = 0 for all (m, z); in practice we condi-
tion on d(mg, 0) = 0 for all mg in a dense regular grid over the treatment
space. After this modification, the only source of uncertainty about v(m, 0)
is (v∗0;m).

5.4 Diagnostics and re-modelling

Prior predictive mean and standard deviation. It is difficult for us
to make judgements about the marginal distribution π(w∗;m) directly, be-
cause the semi-empirical nature of our physical model means that the quan-
tities w∗ and x∗ are not operationally defined. Therefore, we make these
judgements partly indirectly, by examining their implications for the velocity
profile at different treatments, which is operationally defined. The velocity
profile at any particular m will be an uncertain quantity that synthesises
our choices for w∗, the HB model, and our statistical model for the discrep-
ancy. We treat the HB model as inviolate, so that if the velocity profile
does not accord with our judgements, then we need to change the marginal
distribution of w∗, the mapping function k(·), or the variance function of
the discrepancy. Once the velocity profile looks about right (a more for-
mal criterion is not possible here), we know at least that our judgements
on the two domains, w∗ and v(m, z), are consistent. When we first made
this comparison, we found that the velocity profiles looked quite wrong: the
uncertainties were far too large. We used this information mainly to alter
our choices for the marginal variances of α∗ and t∗c , described in section 5.1.

Figure 7 shows our main prior predictive summary diagnostic: the mean
and standard deviation for the velocity profile in a 3 × 3 layout of snow
densities and snow-surface temperatures. Each panel shows both the total
uncertainty, and, inside that, the uncertainty attributable to uncertainty
in the model parameters: the difference is uncertainty attributable to the
discrepancy. The first source of uncertainty dominates, more so at higher
densities.
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Figure 7: Prior predicted velocities on a regular grid in snow density and
snow-surface temperature (cf. Figures 2 and 3). The share attributable
to uncertainty in the model parameters is shown by the ticks inside each
error bar, with the rest being due to the discrepancy between the model and
actual snow behaviour.
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Joint structure. Figure 7 summarises the marginal structure of our judge-
ments, i.e. taken pointwise at different treatments. Our judgements about
the joint structure are much less well-formed: certainly not well-enough
formed that we might use them as the basis for further adjustments to our
choices for the marginal distribution of w∗. However, it is still interesting to
see what our choices and the HB model imply for the covariance of velocities
over the treatment space.

For simplicity, we restrict attention to a single height, z = 0.4m. The
velocity v(m, 0.4) is the velocity of the plug-layer, vh. From (HB-b), this is a
linear function of v0 and a non-linear function of τc (through h, see (HB-c)),
α, and tc. Therefore our uncertainty about v∗h will be affected by both of
the environmental variables, since ρ affects h directly and v∗0 indirectly, and
Tss affects τ∗c indirectly. To visualise the joint structure of this uncertainty,
we compute the spectral decomposition of the variance matrix of v∗h over a
high-resolution grid in the two environmental variables, and plot the first
few eigenvectors. These plots are not shown here: they cannot be effectively
reproduced without colour (colour plots are available at http://www.maths.
bris.ac.uk/∼mazjcr/snowEigen.pdf). The first eigenvector accounts for
43% of total variation, and describes uncertainty about the general height
of the function, without much differentiation according to the values of the
environmental variables. The second eigenvector accounts for 8% of the
total variation, and describes the tilt of the function along a fulcrum roughly
orthogonal to density. All of the remaining eigenvalues are quite small.

From the point of view of experimental design, we conclude that ex-
periments with extreme values of snow density would be more valuable at
reducing uncertainty over the range of environmental variable values than
those with extreme values of snow-surface temperature. This accords with
our intuition that density plays a larger role that temperature. But note
the caveat that about 50% of the variation lies outside the first two compo-
nents, comprising many small contributions. Therefore many experiments
will be required to reduce uncertainty substantially everywhere: certainly
more than the ten experiments we currently have.

Leave-one-out diagnostic. For our observation-based diagnostic we use
leave-one-out plots. For each experiment in turn, we predict the observations
using the outcome of the other nine experiments, and compare the prediction
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with the actual observations. Each prediction takes the form of a mean
vector and a variance matrix, therefore we transform the prediction errors
so that they ought to have mean zero and standard deviation one, and be
uncorrelated.

The resulting prediction errors for each experiment are shown in Fig-
ure 8. This is not the first such plot we made, as we have permitted ourselves
a small amount of tuning of this diagnostic. While the arrangement of the
points is broadly satisfactory, there is apparent some tendency for the points
in any one experiment to be systematically biased away from zero: experi-
ments G and H show this most markedly (although recollect from Figure 1
that these two experiments took place under the same environmental con-
ditions). This tendency was previously stronger, and we traced its source to
the correlation length in the ρ contribution to the discrepancy variance. We
shortened this correlation length, reducing almost to zero the correlation
between experiments of different densities, in the discrepancy. Therefore
common effects across treatments arise mainly through uncertainty in the
model parameters. Our inferences in the next section, which focus on means
and marginal standard deviations, are not very sensitive to the values of the
environmental variables’ correlation lengths.

6 Results

Our main interest is in the velocity profile across a range of values for the
two environmental variables. For simplicity, we restrict attention to the
velocity of the plug-layer (i.e. z = 0.4 m). We present both our prior assess-
ment, and our assessment after adjusting by the observations from the ten
experiments. The results are given in Figures 9 and 10. Each Figure shows
the mean function, represented in terms of grey-scale and contours, and also
an indication of the pointwise standard deviation, in terms of the size of the
grey boxes: details are given in the caption to Figure 9.

In Figure 9, the prior mean field shows that snow density is more impor-
tant than snow-surface temperature, but that there is an interaction between
the two, so that temperature is much more influential when density is high.
A simple observation, but an important one, is that this mean field could not
have been constructed from a representative set of model parameters, even
in the absence of a discrepancy term, because the HB model is non-linear
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Figure 8: Leave-one-out diagnostic. The observations for each experiment in
turn are predicted using observations from the other nine. The prediction
errors from each experiment are standardised so that they ought to have
mean zero and standard deviation one, and be uncorrelated.

in x. Therefore specifying our uncertainty about x∗ is an essential part of
deriving this mean field. The prior standard deviations range from 2.3 m/s
(low density, low temperature) to 3.0 m/s (high density, high temperature).

In Figure 10, the most noticeable effect of adjusting by the observations
from our ten experiments is that the mean field has increased by about 1m/s
everywhere. This is consistent with our observation following the spectral
analysis of the prior variance, which indicated that the overall level of the
function was the dominant source of uncertainty. The ‘tilt’ of the function
does not seem to have changed much. The marginal standard deviations
have been reduced to the range 1.8 m/s to 2.2 m/s. This moderate reduction
in uncertainty (less than 1 m/s) is also consistent with the spectral analysis.

The spectral analysis also indicates that we should not expect a few
additional experiments to have a substantial impact on our uncertainty. The
HB model is a simple model of a very complex physical process, and, by the
very nature of the process and the experimental set-up, the observations
we have are quite noisy. In this situation, it would be unrealistic to expect
ten or even twenty experiments to substantially reduce our uncertainty over
the whole range of values for the environmental variables. But what is

25



300 400 500 600 700

−
14

−
10

−
6

−
4

−
2

0

Density

S
no

w
−

su
rf

ac
e 

te
m

pe
ra

tu
re

4
5

6
7

8
9

10
11

Figure 9: Prior predictive mean and standard deviation of velocity at a
height of 0.4 m, by snow density and snow-surface temperature. The grey-
scale and contours show the mean velocity. The width of each grey square is
inversely proportional to the standard deviation, so that regions with more
white indicate more uncertainty; the standard deviations run from 0m/s
(full width) to ≥ 3 m/s (no width, all white).
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Figure 10: Adjusted predictive mean and standard deviation of velocity at
a height of 0.10 m, cf. Figure 9.
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important is that we have, for the first time, quantified the uncertainty
in our predictions for chute velocities that follows from the HB model’s
uncertain parameters and discrepancy, and the observational errors.

7 Conclusion

In this study we have extended the ‘standard’ approach to model-based in-
ference for complex physical systems to include multiple experiments under
different treatments. This involves introducing an explicit role for the treat-
ment in the assessment of the model’s discrepancy with reality, and also
in the observation process. In our analysis of ten chute experiments using
the Herschel-Bulkley (HB) model the treatment denoted a particular set
of environmental conditions, described by snow density and snow-surface
temperature. We incorporated the treatment into the variance function of
the model discrepancy, where density affected the height of the shear layer,
which interacted with the output index-variable, height. We also incorpo-
rated the treatment into the observation error, to account for the larger
observation errors that arise when the snow is close to melting.

In general the treatment can also affect our judgement about the ‘best’
value of the model parameters. This requires a transformation of the model
parameter space; put simply, we have to construct ‘hyper-model-parameters’
that are uncertain and treatment-independent. These hyper-parameters are
the quantities in which information from experiments under different treat-
ments is combined, to inform predictions over a range of treatment values.
For the HB model we required two sets of such hyper-parameters: to ac-
count for the effect of density on basal slip velocity, and temperature on
stress. In both cases they took the form of uncertain coefficients in quadratic
equations. Hyper-parameters are commonly used in hierarchical statistical
modelling, but this is, to our knowledge, the first time they have been used
in this way in a computer experiment with a physical model.

Throughout our analysis we have made judgements about the HB model
and the statistical framework linking model parameters, model evaluations,
actual snow behaviour, and observations. These types of judgements are
never easy, and can be contentious. But one of the great advantages of
a Bayesian analysis is that it forces us to quantify our judgements in a
transparent manner, to facilitate discussion, and—in due course—revision.
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We have used a number of different methods for quantifying our judgements,
including a novel but effective way of specifying simple uncertain functions.
We have validated these judgements, collectively, in an assessment of prior
predictive means and variances, and in a leave-one-out diagnostic analysis.
They remain, however, our judgements, and we do not expect that they will
meet with the approval of all statisticians and snow experts.

From a practical point of view, our results show how we can extend
the prediction range of our model to environmental conditions that have
not been experimentally observed. In this study we have focused on chute
experiments, but our longterm goal is to construct better avalanche hazard
maps, which are based on numerical modelling of avalanche velocity and
run-out length. At the heart of these models are empirical rheology models
similar to the HB model considered here. However, in current practice
the discrepancy between these models and actual avalanche behaviour is
never formally accounted for, and information on the snow cover properties
(e.g. density and temperature) is ignored; both of these create uncertainty
in the resulting hazard maps. The approach described here allows us to
quantify these uncertainties and should lead to a more time- and site-specific
approach to avalanche hazard estimation, by considering the local temporal
and spatial properties of the snowcover in the avalanche release zones. Many
more treatment variables would have to be taken into account (topography
properties, erosional properties, spreading in 3D avalanche flow). But we are
convinced that this is a neccessary and feasible task for future development
of avalanche hazard management tools.
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Appendix: Imposing constraints on random quadratic

functions

Suppose we have a random function

y = α0 + α1 x + α2 x2 (A1)

where α = (α0, α1, α2) is an uncertain vector subject to the following con-
straints:

(1) E(y;x = x1) = y1, and E(y;x = x2) = y2, where x1 6= x2;

(2) y has an extremum at xe with probability 1, where xe 6= (x1 + x2)/2;

(3) y is concave with probability p;

(4) α0 and α1 are independent;

(5) α is Multivariate Normal.

These conditions may or may not be consistent. Suppose that they are.
Then the mean vector and variance matrix of α are completely determined
by one additional value, or free parameter, the standard deviation of α0.

First, note that (5) implies we need only consider the mean and variance
of α. Then (2) implies that we must have α1 +2α2 xe = 0, which constrains
both the mean and variance of (α1, α2). Thus the three components of the
mean vector must satisfy three linear constraints, given by (1) and (2):1 x1 x2

1

1 x2 x2
2

0 1 2xe


µ0

µ1

µ2

 =

y1

y2

0

 . (A2)

The conditions x1 6= x2 and xe 6= (x1 + x2)/2 ensure that the square matrix
is non-singular.

Consider the case xe 6= 0. For the variance, α2 is a linear function of α1,
so if we specify the variance matrix of {α0, α1} then we induce a variance
matrix for α. By (4), α0 and α1 are independent, and so we only need
to specify the two standard deviations. One of these is the free parameter
σ0 = Sd(α0). The other, σ1, controls the probability that y is concave, or,
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equivalently, the probability that α2 is negative:

Pr(α2 < 0) = Pr(−α1/2xe < 0) =

Pr(α1 < 0) xe < 0,

Pr(α1 > 0) xe > 0.
(A3)

In the first case we have σ1 = −µ1/Φ−1(p), where Φ−1(·) is the quantile
function for the Standard Normal, using (3), and (5) again, and in the
second case σ1 = −µ1/Φ−1(1− p). The constraints are consistent if σ1 > 0.

In the case where xe = 0, we must have µ1 = σ1 = 0. In this case
Pr(α2 < 0) = Φ(−µ2/σ2), and σ2 = −µ2/Φ−1(p). The constraints are con-
sistent if σ2 > 0.
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