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Abstract

For a particular experimental design, there is interest in finding which polynomial
models can be identified in the usual regression set up. The algebraic methods based
on Grobner bases, developed by G Pistone, H P Wynn, E Riccomagno and co-
authors, provide a systematic way of doing this. The algebraic method does not in
general produce all estimable models but it can be shown that it yields models which
which have minimal average degree in a well-defined sense and in both a weighted
and unweighted version. This provides an alternative measure to that based on
“aberration” and moreover is applicable to any experimental design. Bounds are
derived for the criteria and a simple algorithm given.

Key words: Linear aberration, design ideal, factorial design, Latin Hypercube
sampling, corner cut, state polytope.

1 Introduction

It is of considerable value to represent an experimental design as the solution
of a set of polynomial equations. In the terminology of algebraic geometry a
design is a zero dimensional variety and the corresponding ideal comprising
all polynomials which are zero on every design point is called an “ideal of
points”. Issues to do with identifiability of polynomial regression models, or
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interpolators, can be translated into problems about such varieties and ideals,
see [25].

The purpose of this paper is to introduce the notion of linear aberration of
a polynomial model for an experimental design. The definition of it is given
below to help the motivation.

Let @ = (ay,...,4) be a nonnegative d-dimensional integer multi-index.
A monomial in the indeterminates xi,...,x4 is the power product x® =
a2l A model basis is a collection of distinct monomials {z* « € L},
where L is a finite set of multi-indices. By combining linearly monomials in L

we form polynomials:
77L(1') = Z ano‘,

a€el
where 6, are real coefficients. The polynomial 1 (x) is a candidate for inter-
polation or statistical modelling.

This paper is concerned with the following concept.

Definition 1 Let L be a model basis and let w = (wy,...,wq) be a collec-
tion of non-negative weights with Y%, w; = 1. We define the weighted linear
aberration of L as

A(w, L) = % Z Zw,a,-, (1)

(a1,a)EL =1
where n is the number of elements in L.

We shall often refer to the linear aberration of Equation (1) simply as aber-
ration. We are interested in studying aberration for models identifiable by an
experimental design. We are also interested in comparing models and designs
of the same size n with this concept.

Definition 2 An experimental design D, of sample size n = |D|, is a set of
points in RY.

We say that a model basis L with cardinality |L| = n is identifiable by D if
the design model matrix X = [2%],ep.acr is invertible.

We use the name aberration to acknowledge the work on “minimum aberra-
tion” for regular fractional factorial designs of Wu and others, see [13] and
[29]. We do not make a direct mathematical comparison with that work but
simply point to a common motivation. For a given experimental design the
ability to identify models, 7y, with low linear aberration is advantageous. The
weight vector w = (wq,...,wy) creates a simple way of preferring one fac-
tor over another, which extends readily to the selection of the elements in L.
One advantage of the method of this paper is being applicable to an arbitrary
design.



In Section 2 we review the basic ideas on algebraic identifiability. The search
for identifiable models is driven by a divisibility condition, which makes the
search problem tractable. We then introduce the state polytope, whose vertices
correspond to the models identified using the algebra. In Section 3 we study
aberration. The basic ideas on aberration are closely linked with the algebraic
work on corner cut models and state polytopes by Onn and Sturmfels in
[22]. We are specially interested in obtaining minimal values for aberration
for which we establish upper and lower bounds. An approximate approach
to minimal aberration is discussed. In Section 4 we discuss various examples.
In Section 5 we discuss possible extensions of the theory and, by example, a
connection with the notion of aberration by Wu and others is discussed.

2 The G-basis method and the state polytope

The aberation A(w, L) has remarkable connections with the algebraic method
in experimental design introduced by Pistone and Wynn [26] and outlined in
the monograph [25] and joint work of Onn and Sturmfels. In this Section we
present the basic ideas on identifiability using algebraic techniques.

Let the set of all monomials in d indeterminates be T¢ = {2® o € Z4,}, where
Zso is the set of non-negative integers and Z<, is the set of all vectors in d
dimensions and with entries in Zsq. A polynomial is a finite linear combination
of monomials in 7' with real coefficients. The set of all polynomials is denoted
as R[zy, ..., x4]. It has the structure of a ring with the usual operations of sum
and product of polynomials.

A term ordering = on R[zy,..., 74| is a total ordering on 7% such that i)
x® = 1forall 2% € T4, a # (0,...,0) and ii) for all 2%, 2% 27 € T4 if 2® = 27
then 2%2” = x%27. The leading term of a polynomial is the largest term with
non-zero coefficient with respect to >. For a polynomial f € Rz, ..., z4], we
write its leading term as LT, (f).

A partial order on T? is defined by a vector w € Rio as % =, 2P if wTa >
w? 3, where 2%, 2% € T? and w7 is the transposed vector of w. Under some
conditions on w (see [1, 10]) this defines a term order. Given a term order >,
there are w such that ® > z” if and only if 2% >=,, 2”.

A design D, considered as a zero-dimensional variety gives rise to a design
ideal, I(D) which is the set of all polynomials which have zeros at all the points
of D. We have that I(D) C R[zy,...,z4). The polynomial ideal I is generated
by the set of polynomials G = {g1,...,g9,} it I = {37, figi : fi € Rlz1,...,24]}
and we write I = (gq,...,gs)-



An important set of generators for the design ideal is the Grobner basis.
Grobner bases were introduced by Buchberger in [5] and they have become a
powerful computational tool in many fields [10, 11]. A Grébner basis of 1(D)
with respect to a term order > is a finite subset G, (D) C I(D) such that
(LT, (g9) : g € G-(D)) = (LT (f) : f € I(D)). The computation of Grébner
bases is implemented in standard computer programs such as CoCoA, Singular
or Maple, see [8, 15, 19].

Two polynomials f and g in R[zy, ..., x4] are equivalent with respect to (D)
if the following conditions hold:

i) f—gel(D)
ii) f(d)=g(d) foralld € D

Given a term ordering >, the quotient ring Rz, ..., z4]/I(D) has a unique R-
vector space basis given by the monomials in 7% that cannot be divided by the
leading terms of the polynomials in G, (D) for I(D). The monomial basis so
obtained, or equivalently, the set of its exponents L = L(D, >), has a staircase
(also echelon, order ideal) property: for o € L, if f < v componentwise, then
B € L. Equivalently we say that for any z® € L, if 2” divides 2® then 2° € L.
We call bases which have a staircase structure staircase models. The dimension
of R[zy,...,x4]/I(D) as R-vector space is n [26], i.e. the number of points in
D and of multi-indices in L is n.

For a given basis of the quotient ring and a set of real values (data) Y,,z € D,
there exists a unique interpolator 7y (z) such that Y, = np(z), x € D. Other
non-saturated statistical sub-models can be constructed from subsets of L, see
(16, 23].

Definition 3 The algebraic fan of D is L,(D) = {L(D,>), where = is a
term ordering in R[xy,...,xq4)}. This is the collection of staircases L(D,>)
arising from a fixed design D by varying all monomial orderings.

The algebraic fan of a design was proposed in [6] while the algebraic fan of
a ideal is introduced in [20]. Babson et al. in [1] proposed a polynomial time
algorithm to compute £,(D). They compute an efficient set of weight vectors
and perform a change of basis which stems from the so-called FGLM algorithm,
see [12]. In Section 3.1 an algorithm is presented to identify a model in the
algebraic fan using a weight vector.

It is important to note that not all staircase models identified by D are in
L.(D). We denote the set of all identifiable staircase models for a design D as
Ls(D). In fact the algebraic fan is small relative to L4(D), that is £,(D) C
Ls(D), see Chapter 6 in [17] and Section 4 in [24].

We now establish the link between the algebraic fan of a design and the state



polytope of the design ideal. For a model basis L define

agy = Z o; € Zio

(1,maa)EL

This vector appears in the definition of A(w

, L) and we can write A(w, L) =
(wT@)/n. The set all such vectors over L,(D)

gives the state polytope.

Definition 4 The state polytope S(D) of a design D, or equivalently of the
design ideal 1(D) is the convex hull

S(D) :=conv ({@y : L is a staircase in L,(D)}).

The following theorem summarizes the connection between the state polytope
and the set of models £,(D), i.e. the relation between a design and its algebraic
fan.

Theorem 1 (Sturmfels, 1995) Let D be a design and let S(D) be its state
polytope. Then the set of vertices of the state polytope of D is in one to one
correspondence with the algebraic fan of D.

The state polytope does not only contain information concerning models in
the algebraic fan of a design, but it also provides information about the term
ordering vectors needed to construct it. We recall that a d-dimensional poly-
tope is a bounded subset of R?, which corresponds to the solutions of a system
of linear inequalities. The normal cone of a face of a polytope is the relatively
open cone of those vectors in R? uniquely minimised over the face of the poly-
tope. The normal fan of a polytope is the collection of all the normal cones
of the polytope.

Two ordering vectors w and w’ are equivalent (modulo I(D)) if L(D,>,) =
L(D, =, ). The normal fan of the state polytope partitions R, into equiva-
lence classes of ordering vectors, see [1, 14, 27]. Indeed every vertex of S(D)
corresponds to a model in £,(D). Moreover, the interior of the normal cone
of a vertex in S(D) contains those vectors w which correspond to the same
equivalence class.

We motivate Theorem 2 below with a simple example. The black dots in
Figure 1 give a 5 point design in 2 dimensions, D. They also give the set of
exponents L obtained for any term ordering, indeed the size of the algebraic
fan of D is one. The crosses represent the exponents of the leading terms of
the Grobner basis: (2,0), (1,2), (0,3). The line separates the model exponents,
L, from these leading terms. This is an example of a corner cut model. Note
that equivalently the line separates L from its complement in Z2.

Definition 5 A model L, of size |L| = n, is said to be a corner cut model if



Fig. 1. Corner cut and separating hyperplane.

there is a (d — 1) dimensional hyperplane separating L from its complement
240\ L.

Not all staircases are corner cuts, for example L = {(0,0),(1,0), (0,1),(1,1)}
is a staircase that cannot be separated by a hyperplane from its complement
in Z2,.

The set of exponents of a corner cut model is referred to as a corner cut
staircase or simply, as a corner cut. Corner cuts were introduced by Onn and
Sturmfels in [22]. A generating function for the number of bidimensional corner
cuts is given in [9], while the order of the cardinality of the set of corner cuts is
proven bounded by (nlogn)¢! in [28]. A special class of designs is composed
with those designs that identify all corner cut models of a given size.

Definition 6 A design D C R? comprised of n distinct points is said to be
generic if all corner cut models of size n = |D| are identifiable.

A special polytope is constructed with the exponents for corner cut models.
It will be used to compute the algebraic fan of generic designs.

Definition 7 The corner cut polytope is CC(n,d) := conv({ay, : L is a corner
cut staircase in d dimensions and of size n}).

For a discussion on the properties of bidimensional corner cut polytopes see
[21]. The algebraic fan of generic designs corresponds to the set of corner cut
models, as stated in the following theorem.

Theorem 2 (Onn and Sturmfels, 1999) Let D C R? be a generic design with
n points. Then

i) S(D)=CC(n,d) and
i) the algebraic fan of D is the set of corner cut models in d dimensions and
with n elements.

We remark that the corner cut polytope is an invariant object for the class of
all the ideals generated by generic designs with the same sample size n and
number of factors d and all generic designs have the same state polytope.



3 Minimal linear aberration

An important feature of the state polytope is that its vertices are automatically
“lower” vertices in the sense of convexity. State polytopes relate directly to
models with minimal linear aberration. In Section 3.1 an algorithm to compute
a models of minimal aberration is presented.

Theorem 3 Given a design D C R with n distinct points and a weight vector
w € RY), there is a least one vertex o € S(D) which minimises A(w, L) over
all identifiable staircase models Ls(D), that is
~(wTa%) = Alw, Y = | min A(w,L)
—(w'a*) = A(w = min A(w
n ’ Lels(D) ’
for all L* such that @« = o*. Moreover, given a vertex of S(D), there is at
least one w* € R%,, such that this vertex (model) minimizes A(w, L), that is,

A(w*, L) = min A(w, L)

wERiO
for L such that oy = @,

Proof. First, for given w we minimise w’ay, for L € L£,(D), which is a fi-
nite set, see [20]. The @y for L € L,(D) are vertices of S(D) by definition.
Furthermore, because we restrict L to the algebraic fan of D there cannot be
three aligned @y, in S(D), see [27]. For the second claim, it is sufficient to take
a vector wy, in the interior of a normal cone for @,. By definition, A(w, L) is
minimised for vectors on the interior of the normal cone. m

Theorem 4 follows directly from Theorem 3.

Theorem 4 For every weight vector w there is a design D C R® which mini-
mizes A(w, L), among all designs with sample size n and identifiable staircases.

This is stated compactly as:

A*(w,n) = min min A(w, L)
D:[Dj=n LeLa(D)

is achieved for a generic design. That is, if a design is generic then automati-
cally its algebraic fan contains models of minimal aberration.

3.1 Computation of the minimal aberration model

The model minimizing linear aberration can be found by the greedy algorithm.
Let D be a design; let w be a fixed weight vector in R%, and let I" be the



following set of potential exponents

F::{a:(al,...,ad)ENd:ﬁ(ai—l—l)gn}.

=1

The set I' contains all staircase models with n terms, see [1]. Now define the
weight of a € T to be w(a) := 2 3% w;; = (w”a)/n. Order the vectors in
I' by their weight w(-) in increasing order, that is, index them as !, ..., al!
such that w(a!) < -+ < w(al™), where |T'| is the cardinality of I'. Then the
set L C I' with the first n terms of I' which are identifiable by D has minimum

aberration.

The model basis L is constructed by the following procedure: initialize L := ();
while |L| < n, find o' of smallest index with respect to w(-) such that the
column vectors d*, @ € L U {a'},d € D, are linearly independent; update
L := LU{a'} and repeat until |L| = n. We have the following theorem.

Theorem 5 Let D C R? be a design; let w be a fived weight vector with pos-
itive entries and let L be the model basis constructed by the greedy algorithm.
Then L belongs to the algebraic fan of the design.

Example 1 Consider the design D = {(0,0),(1,0),(0,1),(—=1,1)} and the
weight vector w = (4, 1). The set of potential exponents, I' contains 8 elements,
which are sorted out using the weight function w(-) as

I ={(0,0),(0,1), (0,2), (0,3), (1,0), (1,1), (2,0), (3,0) }
nw() = 0 1 2 3 4 5 8 12

The first 4 elements in [" such that their design columns are linearly inde-
pendent are L = {(0,0), (0, 1), (1,0), (0,1)}. Thus the set L of minimal linear
aberration corresponds to the model with terms {1, x1, 22, 122}

3.2 FExamples

We can compare different designs using aberration as long as they have the
same number of factors d and the number of points n. For a design D, the
state polyhedron of D is obtained by (Minkowski) addition of R to the state
polytope S(D) [1]. The state polyhedron yields the same information as the
state polytope. Indeed the normal fan of the (negative) state polyhedron yields
automatically the first orthant [14].

Example 2 Consider a central composite design (CCD, see [4]) with two
factors, one observation at the origin and axial distance a = v/2. The CCD
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Fig. 2. The left graph depicts S(D) and the state polyhedron for the CCD of Ex-
ample 2. The right graph shows state polyhedrons for the three designs of Example
2. The empty dots correspond to vertexes/models identified by the generic design
only, while the triangle is for the sole model in the algebraic fan of the 32 design.

has 9 runs and its algebraic fan contains exactly two models, namely
2,3 .4 2 2
{1,x1,x1,x1,:€1,xg,xlxg,xlxg,xg} (2)

together with the model obtained by permuting the roles of x; and z5. Let
L; be the set of exponents of the model support in Equation (2). Clearly,
@y, = (13,5) and the state polytope for the design ideal of the CCD is
conv ({(13,5),(5,13)}), see left graph of Figure 2. Now consider a generic
design with the same number of runs as the CCD. In [9, 22] it is shown that
there are 12 corner cut models for d = 2 and n = 9. By Theorem 2, the alge-
braic fan of the generic design contains all the 12 corner cut models, including
those in the algebraic fan of the CCD. We consider also a full factorial design
32, which identifies only the model with support {1, z;, 22} ®{1, z2, 23}, where
® is the Kronecker product. Its state polytope is the point (9,9). In the right
graph of Figure 2 we depict the state polyhedrons for the three designs and in
Figure 3 we plot minyez,(py A(w, L) for w = (wy, ws) € [0, 1]* and wy+wy = 1.
For the CCD this is

((wi,1=wi)(13,5)7) /9 = (S8wy +5)/9  if wy <1/2
(w1, 1= wi)(5,13)7) /9 = (—8wy +13)/9 if w; > 1/2

For the generic design the aberration curve is a piecewise linear function with
12 segments. Finally, the aberration for the design 32 is constant for all weights.
As expected, the aberration takes its minimum value for the generic design,
over all possible weights.

Example 3 Consider the design D = {(0,0), (1,1), (2,2), (3,4), (5,7), (11, 13),
(o, B)}, where (a, B) =~ (1.82997,1.82448) is the only real solution of a system
of polynomial equations, see [22, Page 47|. The algebraic fan of the above
design has ten models and its state polytope is

conv ({(21,0), (15,1),(11,2),(9,3),(6,5), (5,6),(3,9), (2,11), (1,15),(0,21)}).
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Fig. 3. Minimal aberration for three designs in two factors and nine runs, see Ex-
ample 2.

Now consider a generic design GG with the same number of runs and factors.
The algebraic fan of GG is the set of corner cut models which for 7 points in 2
dimensions has 8 elements [9, 22] and thus its state polytope is the corner cut

polytope:
CC(7,2) = conv ({(21,0), (15,1), (11,2),(7,4),(4,7),(2,11),(1,15),(0,21)}).

In Figure 4 we graph the aberration for both designs as a function of wj.
Although the size of the algebraic fan of D is bigger than that for a generic
design, the weighted aberration takes minimal value for the generic design for
all possible weight vectors (wy, 1 — wy).

0.8 - o~
0.6 1
0.4
0.2

| — W
0 0.5 1
Fig. 4. Minimal aberration for G (solid line) and D (dashed line), see Example 3.

3.3 Bounds for the aberration

Although the minimal value of the aberration A*(w,n), depends on the weight
vector w = (wy, ..., wy), we can carry out a special normalisation which leads
to bounds for the minimal aberration. These bounds depend only on a simple
function of the weights, surprisingly the geometric mean. Our construction
is based upon the expected value of auxiliary random variables which are
suitably constructed.

For the rest of this Section let D C R? be a generic design with n points. Let

10



w be a fixed weight vector with positive elements and let L be the corner cut
model identified by w. We recall that |L| = n.

For an integer multindex a define its upper cell as the unit cube with lower
vertex at «

E(Q):{UERdZOKZ’SUZ’SOQ“Fl}

and similarly the lower cell of « is
cla)={veR:q; —1<v <}

Define:
Q = UaeL Q(a)a @ = UaeL E(O{).

See Figure 5 for a depiction of lower and upper cells with L a corner cut.

V2 (%

WL .

(%1

L / ;\A2
S(w)

Fig. 5. Bidimensional corner cut together with upper (left diagram) and lower cells
(right diagram) @ and Q. In both diagrams the vector w, a separating hyperplane
and equivalent simplexes S(w) and S(w) were added.

Clearly, the volume of @ and of Q@ equals n, that is the cardinality of L. We
now create a simplex S(w) C R? which is directed by the vector w and has
volume n. We call this simplex and the subset of the first orthant below it the
equivalent simplex, which is formally S(w) = {v cRe, T vw; < c}. The
volume of S(w) is determined up to the constant ¢ > 0. We find the value of
this constant by setting the total volume of the equivalent simplex equal to n:

Cd

n—=——ms—
d )
d! [Ti=; w;

giving

=

¢ = (nd)? g(w), (3)

where

11



is the geometric mean of the components of the weight vector w. We call
H(w) the hyperplane which limits the equivalent simplex, that is H(w) =

{v € ]R‘éo Y4 vw; = c}.

The expected value of a random variable with uniform support over S(w)
will be used now to compute bounds for aberration. We can compute a no-
tional value of A, the linear aberration for a distribution D as the expectation
A(w, S(w)) = E(C w;X;) for the random vector (X7, ..., X;) with uniform
distribution over S(w). Thus for the equivalent simplex we have that

1 d Cd+1 1 d
= — —_— Nda
Alw, S(w)) n(d+ DI, w, () o

g(w), (4)

after substituting Equation (3) in A(w, S(w))

We observe that the region @) is obtained from @ by a negative shift (—1,..., —1).
As before, we consider a random vector with joint uniform distribution over
Q. We then use the expected value of Y w;X; as the aberration A(w,(@).
Analogously we define A(w, Q) and we have

Alw,Q) = A(w,Q) ~ 1

Similarly we can create a region S(w) by the same downward shift, and we
have

A(w, S(w)) = A(w, S(w)) — 1.
As D is generic and thus L is a corner cut there exist cutting hyperplanes
separating L from its complement in Z<,. Moreover if w is in the interior
of the normal cone of the corner cut polytope, then we can select a cutting
hyperplane H which is orthogonal to w and thus parallel to H(w) [22].

Example 4 Consider a generic design with d = 2,n = 3 and L = {(0,0),
(1,0),(2,0)}. The weight vector w = (1,2) is not in the interior of a nor-
mal cone of the corner cut polytope C'C(2,3). Indeed the weight vector is
on the boundary of the normal cone separating L from the corner cut model
{(0,0), (1,0),(0,1)}. The hyperplanes perpendicular to w are 2z; — x5 = ¢
and none of them is a cutting hyperplane for L.

By a simple argument the simplex Sy with faces x; =0, (i =1,...,d) and H
lies wholly within the upper quadrant region @@ because otherwise, the cutting
hyperplane hypothesis for H would be violated and thus Sy has volume less
than n. Recall that the equivalent simplex S(w) has volume n.

There is one additional argument that leads to our first inequality. Since the
region @ and the equivalent simplex S(w) have the same volume n, it must
be that @ protrudes beyond S(w). Equivalently we may move mass from @,
that is, beyond H(w), inside S(w). As this mass occurs orthogonally to w, we

12



claim that this movement diminishes the aberration, thus
Alw, S(w)) < A(w, Q).

This property is also inherited by the downward shifted version, and we have
A(w, S(w)) < A(w, Q). The same orthogonality argument shows the middle
inequality in the following sequence:

Alw, S(w)) < A(w, Q) < A(w, S(w)) < A(w, Q).

By Theorem 4, as the design is generic and L is the model identified by w,
clearly we have

Alw,Q) < A*(w,n) < A(w, Q).

Analogous argument and construction as above shows that A(w, Q) < A(w, S(w))+
1.

Theorem 6 Let D C R? be a generic design with n points; let w € R? be a
vector of positive weights. Then the minimal aberration A*(w,n) satisfies the
bounds

A(w, S(w)) — 1 < A*(w,n) < A(w, S(w)) + 1, (5)
where A(w, S(w)) is computed in Equation (4).

There are various kinds of asymptotic that this formula leads to. From the
inequality between geometric and arithmetic mean we have g(w) < é. This

suggests the condition:

C
g(w) —>de d
_ 144

for some constant 0 < ¢ < 1. Now for w; = =5, with >°d; = 0, and assuming

convergence of 362 and n = k%, we use use Stirling’s approximation to obtain

A*(w,n) — @
d—oo €

Example 5 For small d and n the bounds of Equation (5) are rather coarse.
Figure 6 shows the bounds A(w, S(w)) £ 1 of Theorem 6 together with the
minimal aberration A*(w,n), plotted as function of w; for d = 2 and n = 4.
Notice that, as function of w, the minimal aberration A*(w,n) is a piece-wise
linear graph (this is a general fact, consequence of Definition 1), each segment
corresponding to a different vertex (different corner cut) of the corner cut
polytope. Figures 7 and 8 give the bounds and minimal aberration for n = 20
and n = 100. In Figures 6, 7 and 8 we also added a curve for the approximate
aberration which is presented in Theorem 7 below.

13



2 I el B
/// \\\
1.5+ // \\
1 ‘
//” \\\\
0.5 -7 — N
4 = \
0 = ~ wy
; LT ==~ N
_
—0.54 7 0.5 N 1
7 \
_1#/ '

Fig. 6. Minimal aberration A*(w,n) (solid line) for a generic design with d = 2,
n = 4; bounds A(w, S(w)) and A(w, S(w))£1 of Theorem 6 (dashed lines). We also
show approximate aberration A using Theorem 7 (thin dashed line).
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Fig. 7. Minimal aberration A*(w,n) (solid line) for a generic design with d = 2,
n = 20; bounds A(w, S(w)) and A(w, S(w)) = 1 and (dashed lines) of Theorem 6.
The figure also shows approximate aberration A of Theorem 7 (thin dashed line)
which almost overlaps the solid line.

3.4 Approzimated state polytope for generic designs

Note that as w changes the hyperplanes H(w) are tangent to the surface
defined by

d 1 d
sz‘ =% = nd! (—)
i=1 d

and the (normalised) centroids of the equivalent simplices lie on the surface
defined by

ljxizwzn(ﬁ)dd! (6)



Fig. 8. Minimal aberration A*(w,n) (solid line) for a generic design with d = 2,
n = 100; bounds A(w, S(w)) and A(w, S(s)) & 1 (dashed lines). The approximate
aberration A of Equation (8) (thin dashed line) is also plotted, but is undistinguish-
able from the minimal aberration.

We can solve an equivalent optimisation problem to the computations of
A(w, S(w)) in terms of the tangent surfaces: for all centroids lying above or
on the surface of Equation (6), the minimum value of A(w, S(w)) is achieved
at the centroid of the tangent.

In the above argument, we are essentially using the surface in Equation (6) to
approximate the lower border of the state polytope for a generic design, i.e.
the lower border of the corner cut polytope. In order to improve the bounds
given in Theorem 6, it seems natural simply to take a surface defined by

d

[[(zi+a) =0 (7)

i=1

with fixes a, b. In Theorem 6, we have a = £1 and b = b" in Equation (6). In
Appendix B we discuss an approach to select the values a, b to obtain a good
approximation of the corner cut polytope.

The following theorem estimates minimal aberration for generic designs using
the approximation of Equation (7). The proof is based on simple ideas of
constrained optimization, see Appendix A.

Theorem 7 Letw = (wy, ..., wq) be a fized positive weight vector; let D C R?
be a generic design with n points. Let the state polytope of I(D) be approxi-
mated by Equation (7). Then the value

A(w) = dbYg(w) — a;wi (8)

is an approximation of A*(w,n).

We recall that g(w) is the geometrical mean of the components in w. Figures 6,
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7 and 8 give examples (d = 2 factors, n = 4,20, 100) of the minimal aberration
A(w) in Theorem 7. The values a,b for each case were selected using the
technique in Appendix B.

4 Examples

In this section we discuss through extended examples other possible uses of
the ideas on generic designs and aberration. In Section 4.1 we explore and
conjecture the existence of generic designs over Latin hypercubes for all fac-
tors and sample sizes. In Section 4.2 we compare fractional factorial designs
through their state polytopes.

4.1  Latin hypercube design

Latin hypercube designs (LH) were first proposed in [18] in the context of
computer experiments. Latin hypercubes are designs with reasonable space
filling properties and good projections in lower dimensions.

Theorem 4 relates minimal aberration to generic designs, i.e. if the design is
generic, then it identifies models of lower weighted degree (and minimal aber-
ration) for any weight vector w. In what follows we study LH using Definition
6 of generic designs.

The construction of a Latin hypercube design can be summarised as follows.

(1) Divide the range of each factor into n equal segments.

(2) Select a value in each segment using a random uniform distribution, or
any other continuous distribution.

(3) Randomly permute the list for each factor.

By Theorem 30 in [25], a Latin hypercube design constructed as above is
generic with probability one.

We now consider a special type of LH designs. This type is constructed by
selecting a fixed value in every segment in Step 2. For instance, we could
select the minimum, maximum or the midpoint value for every segment.

There are a few obvious cases of LH designs which are not generic, for exam-
ple when the points of the design lie on a line. We have performed exhaustive
search for a few cases of LH in two dimensions. Our search points out to the
existence of generic LH for different values of d,n. In fact for the values we
tried the proportion of generic LH tends clearly to one. See Figures 9 and
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Fig. 9. Percentage of generic LHS designs for d = 2 and n < 15.
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Fig. 10. Minus logarithm of the percentage of non generic LHS designs for d = 2
and n < 15.

10 for a depiction of the results, where we additionally plot the proportion of
maximal fan designs among LH, i.e. LH designs that identify all possible stair-
case models for given d,n. We have the following conjecture for the existence
of generic LHS for any value of d, n.

Conjecture 8 For every d > 2 and n > 2 there exists at least one generic
LH design, constructed by setting a fized value for every one of the n segments
i the above procedure.

Experimentally we observed that when the sample size is n = kzl fork > 1,
the genericity of a LH design is closely linked to the identification of a model
of total degree k — 1. For example for k = 4,d = 2,n = 10 there are 10! LH
of which 99% are generic. Of the remaining 1% which are not generic only 6
designs (up to reflection and rotation), which are given in Figure 11, identify
the cubic model with exponent set

L ={(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),(3,0),(2,1),(1,2),(0,3)}.
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Fig. 11. LH on [0,1]? for d = 2,n = 10 which are not generic and identify L.
4.2 Orthogonal fractions

In this Section we consider some of the techniques of this paper for the class
of fractional factorial designs with two levels. We first explore the relation
between state polyhedron and then later propose a tool to compare the iden-
tification capability of designs.

In Examples 2 and 3 we observed that in general, nesting of state polyhedrons
for two designs does not imply any easy relation between the algebraic fan of
the designs. If instead we restrict to the family of designs with two levels then
there is a clear relation between such nesting and algebraic fans. We have the
following Lemma from Chapter 6 in [17].

Lemma 9 Let Fy and Fy be two fractional factorial designs with two levels
and let Sy and Sy be their corresponding state polyhedrons of I(Fy),1(Fy).
Then the nesting of state polyhedrons S; C Sy implies nesting of algebraic
fans L,(F1) C L,(F).

The following example is based upon Lemma 9 and presents an interesting
relation between resolution and identifiability. That is, bigger resolution points
to more models in the algebraic fan.

Example 6 Let I} and F, be the 21y and 2f;;' fractional fractional designs
with eight runs in four factors and respective generators rixox3r4 —1 = 0 and
x1x9x3—1 = 0. The subindices I1I, IV refer to the resolution of the fraction, see
2, 3]. Their corresponding state polyhedrons are nested, i.e. S(Fy) C S(F})
and by direct computation we confirm that the algebraic fans are also nested.
The algebraic fan £, (F,) has four models, while £,(F}) includes 12 elements.

However, exploiting this nesting of fans to compare designs using aberration
might need additional considerations.
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Example 7 Let I, F5 be the fractions 217\7 2 given by generators xg—r1x203 =
0,27 — xox3xy = 0 and xg — 12903204 = 0, 17 — x1T22375 = 0 respectively. Al-
though both fractions have the same resolution, the fraction F3 corresponds
to a minimum aberration design using the definition of [13]. The state polyhe-
dron S(F7) has 133 vertices while S(F,) has 1708. There is no nesting of the
state polyhedrons and L£,(Fy) N L, (Fy) # 0.

A proposal to compare two designs D, Dy of the same size through their
state polytopes is to map the vertices of the state polytopes S(D;),S(Ds)
with a function f : R? — R. In this way the state polytopes of D; and D,
are compared by the univariate projections of their vertices. We propose a
weighted sum of the vertex coordinates

d
f(vlw"vvd> = Zwi% (9)
i=1
with positive weights w; > 0. We use w; = 1fori =1,...,d and thus Equation

(9) allows for direct comparison of designs based on the distribution of total
degrees for models in the algebraic fan.

Example 8 (Continuation of Example 7) We transform the vertices of the
state polytopes for F} and F, using Equation (9). In Table 1 in Appendix
C we summarize the results for each fraction as the distribution of absolute
and relative frequencies. Clearly, the fraction F5 with minimum aberration for
generators identifies models with a smaller total degree than that for F; and
in that sense it has smaller linear aberration. See Figure 12 for a histogram of
the relative frequencies for I} and Fs.

50%

—F

40%

30% F3 F2

20% - \ \
10% 4
] . =

T T T T T T T T T T T
60 70 80

Fig. 12. Histograms of relative frequencies for fractions F; and F, see Example 8.
We added Fj3 of Example 9.

5 Discussion

5.1 (Generalised concave aberration

This paper is partly concerned with a problem of linear programming, i.e.
optimising a linear function f : R — R over a convex polytope. We now dis-
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cuss extensions of our work using other types of aberration. When we consider
concave aberration criteria, some of our results still hold.

Consider any concave function f : R? — R. Now, given a model L, define its
aberration by

A(f, 1) :zf(Zoq,...,Zozd>.

aeL a€l

The linear aberration of Definition 1 is the special case where f is the following
linear (hence concave) function,

f:R*" — R
1.4
r=(x1,...,2q) — —Zwixi.
Nz

Since we only appealed to convexity, Theorem 3 is valid when we replace
A(w, L) by the more general form A(f,L). That is to say, the set of lower
vertices of the state polytope (corresponding to models in the algebraic fan)
contains the solution to minimising any concave aberration function. This
will be exploited in further research. A further development is to consider
aberration A(w,S(w)) with respect to other distributions rather than the
uniform.

5.2 Connection with aberration of Wu and others

In the statistical literature, the word aberration has been used to refer to
properties of the generators for fractional factorial designs, see [7, 13, 29].
Another topic of future research is to link minimal aberration of Definition
1 with the traditional measure based on generators for a fractional factorial
design.

We conjecture that among the class of orthogonal fractions of 2¢ designs there
is some kind of correspondence between the minimal linear aberration of this
paper and minimum generator aberration of Wu and others. If we select non-
orthogonal fractions, the situation is more complex, as the next example shows.

Example 9 Let F3 be the non-orthogonal fraction with size n = 32 of a 27
design given in Table 2 of Appendix D. We also consider the designs F; and
F5 of Examples 7 and 8. The three designs have the same size, but the design
F3 cannot be compared with F; or F, in traditional terms as it is not even
orthogonal. However, we can compare the designs based in the distribution of
degrees in their algebraic fans.
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An interpolation as presented in Appendix B suggests that the minimum de-
gree of models identified by a generic design with n = 32,d = 7 is 53.5 ~ 54.
This number is a lower bound for the total degree of models identified by
designs Fi, F5 and F3. In other words, the set of total degrees for models in al-
gebraic fan of Fy, I, and Fy is lower bounded by 54, e.g. 54 < min({%, ay,
LeL,(F)}) fori=1,2,3.

Initial results show that

i) the size of £,(F3) is much longer (it has around 6 x 105 models) than
that for designs F; and Fj, see Table 1 in Appendix B;
ii) the algebraic fans of F} and F, are not contained in the algebraic fan of
Fg, and
iii) the design F3 identifies model of lower degree than F; or F, (indeed of
total degree 58), and the bound 54 is verified.

It is clear that F3 has smaller minimal linear aberration than F} and F3, see
Figure 12. We also note that the histogram for F3 presents more symmetry
than that for F; and F5.

Appendix A: Proof of Theorem 7

Proof. The proof is basically the minimisation over the first orthant of 3%, w;x;
subject to the constraint [[%,(z; + a) = b. The problem is solved by a change
of coordinates to 2} = x; + a for i = 1,...,d. We minimise >% | w;z! subject
to [1%, % — b= 0 . Using standard optimization tools, we form the Lagrange
multiplier

d d
L(z',X\) =) wiz, — A <H T, — b)
i=1 i=1
and then solve the system of equations VL(z', \) = 0, % = 0. The solution
vector is ¥ = (2%, ..., x5 ) where
d 1/d
xfl — y/dl—li:liwi. (10)

w;

The convexity of the functions 2%, w;z; and [[%, #; = b over the first orthant
guarantees that z* is indeed the minimum. The aberration for this minimal
point is

d
S wia = dbYig(w).
i=1

Finally we note that 2* = 2 — a and compute the aberration using z7,

achieving the approximate aberration A of Equation (8). m
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We remark that for a fixed w, x} serves as an approximation to the centroid
of the corresponding corner cut model and therefore A is an approximation to
A*(w,n). Although the approximate aberration A does not depend on the ac-
tual corner cut identified by L, the minimal aberration A*(w,n) does depend
on it. If L is the corner cut directed by w, the practical validity of the approxi-
mate aberration A relies on x} being close enough to % > aer ;. This closeness
depends ultimately on a,b. See Appendix 5.2 for a proposal to compute a, b.

Appendix B: Computing values a,b for the approximate corner cut
polytope

In Section 3.4 we proposed the continuous function of Equation (7) to ap-
proximate the corner cut polytope (which is piecewise linear surface). In this
section we discuss on the selection of the values a,b so that the approxima-
tion is good enough. In general, the values a, b will depend on the number of
dimensions d and number of points in the design n. However, for fixed d, the
approximation will be coarse for small values of n.

For our approximation we use the following properties of the corner cut poly-
tope, which have been studied as well in [21] and [22].

Lemma 10 The corner cut polytope satisfies the following properties.

i) The intersection of the corner cut polytope with the axes occurs at the
point (Z)
ii) When for k > 1, the sample size n satisfies

n:<k+3—1> ()

then the corner cut polytope is pointed.
Proof.

i) The intersection is the the sum of exponents for any marginal model of
the form {1,z;,22,..., 20" '}. Therefore the intersection must occur at
Yy i = (Z)

ii) The corner cut polytope is pointed when the sample size is the same as
the size of a model of total degree k — 1, that is, there are (dH._j) terms

of degree j in the model where j = 0,...,k — 1. Therefore the sample

size must be n = Z?;& (d+}_3) = (Hj_l).

22



Remark 11 When Equation (11) is satisfied, the tip of the pointed corner
. kt+d—1 kt+d—1

cut polytope has coordinates oy, = (( j1-+1 ), e ( er+1 ))

We propose to force Equation (7) to satisfy the condition of Item 1 in Lemma

10 and pass through the tip point «ay, for the model of total degree k — 1. To

summarize, when sample size satisfies Equation (11) then a, b must satisfy the

following equations:

—1
b=a? <n2 +a) and b = (c + a)?,

k+d—1
d+1

. . k
size, n, is not of the form n = ( +

1

where ¢ = ;( ) is the scaled tip of the corner cut poytope. When design

d—1
d
the value for ¢, the scaled tip of the polytope, that is to solve Equation (11)
k+d—1
).

) for some k£ > 1, we propose to interpolate

for k and interpolate the corresponding tip with %(

For two dimensions (d = 2) by interpolation and solving the two conditions
above we obtain the following formulee for a, b in terms of n:

5—3vV1+8n+4n b (n_1+ )
a = = Qa a .
3(3—2\/1+8n+3n)7 2

See Figure 13 for a depiction of the corner cut polytope and the approximate
curve for d = 2,n = 7. This interpolation is difficult for d > 2 and we have to
rely on approximations. The following formulae are rough approximations for
a, b obtained by truncation of the binomial expansions

w 2d!n =1 b—ad_l(n_l—i—a)N dn
T\ (d+1)d(n—1) U 2 Td+ 1)
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