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Abstract

Dimensionality reduction is utilised in a range of research domains. Put simply, dimensionality
reduction aims to reduce the dimension (number of variables) in a given data set, while retaining
some properties of the original complete data set. Dimensionality reduction techniques have not been
widely applied in an emulator setting, although some recent work does consider the application of
principal components analysis to the output variables of emulator models. Traditionally, dimension-
ality reduction is used for visualisation, with the aim often being to determine a 2D representation of
the complete high dimensional data set, and as a preprocessing step to inference in a range of models.
Inference methods often work better, for a fixed number of samples, in terms of both computational
efficiency and their ability to consistently estimate parameters in the models, with smaller numbers
of variables, and thus typically a smaller number of parameters that need to be estimated. The aim
of this report is to provide an overview of dimension reduction methods that might be applicable in
the emulator setting. This is assisted by the creation of a decision tree which a modeller can employ
to assess the suitability of dimensionality reduction techniques for a given problem. We present some
results on a series of toy model settings aimed at illustrating the ability of the various methods to
capture the intrinsic dimensionality of the model, and then assess their use in an emulator setting.
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1 Introduction

One of the central aims of the MUCM project is to assess, and improve on, our ability to deal with
complex, high-dimensional models in an emulation setting. In this context, the high dimensional means
that these models might have many inputs and / or produce many outputs. One of the basic building
blocks of the MUCM project is the use of emulators, which provide a statistical approximation of a
simulator. The simulator is typically, but not exclusively, a deterministic piece of computer code,
that represents at some level of abstraction a real system being modelled. The simulator can in this
context be considered an input-output mapping, which the emulator approximates probabilistically.
Typically, a Gaussian process methodology is used to represent such an emulator. The Gaussian process
methodology becomes more computer-intensive as the dimensionality of the input and output spaces
increase, in particular the methodology does not scale well in the number of input-output pairs (we call
these training points). The major goal of Theme 1 of the MUCM project, which is undertaken at Aston
University and Durham University, is to deal with high-dimensionality issues in the input and output
spaces, as well as addressing the scaling with the number of training points. The aim is to develop
solutions together with a decision tree which will help modellers who wish to employ emulator methods,
to deal with some of the largest and most challenging models in areas such as environmental science,
protein modelling and particle physics. Within this theme, the work at Aston is divided into two work-
packages; WP 1.1 - tackles screening issues and WP 1.2 - deals with sparsity and the use projection
methods.

This report considers dimension reduction in the input space. Screening methods are widely applied
in simulator / emulator setting under the umbrella of sensitivity analysis (Saltelli et al., 2000). In
screening the interpretation of the results is comparatively straightforward as one typically screens out
redundant variables. This is a form of dimension reduction in the input variables, but in this report
we consider projective based dimension reduction. Interpretation becomes difficult in the projective
dimension reduction case, since the resulting reduced dimensions are linear / non-linear combinations of
the input variables and in some cases this mapping might not be invertible.

This technical report provides a discussion of dimensionality reduction approaches, and assess how
these might be applied in the emulator setting. Our aim is to develop a decision tree which can be utilised
by a modeller to take effective decisions about which dimensionality reduction techniques to apply to
the problem at hand. The focus of this report is discussion on dimension reduction in general, excluding
the screening methods. Readers interested in screening methods in emulator setting are directed to a
separate technical report on the work carried out at Aston on the screening part by Boukouvalas et al.
(2007).

In the next section we state the motivation of applying dimension reduction prior to emulation.
Section 3 presents the decision tree which provides a discussion on which dimension reduction techniques
to use in a given situation. We review some of the popular unsupervised dimension reduction methods
and supervised dimension reduction methods in Section 4 and 5 respectively. Results on two toy datasets
are reported and discussed in Section 6. In Section 7 some open questions are listed before the summary
of the report in Section 8.

2 Why attempt dimension reduction prior to emulation?

In existing applications emulation methods have been applied to a range of relatively low dimensional
problems, with input dimensions up to O(100)1 and outputs typically of dimension 1, but up to similar
orders of magnitude. Allowing the emulation methodology to be applied in higher dimensions requires
very careful treatment. Several problems arise:

• If the simulator has a very large number of seemingly relevant inputs (assuming the screening
has already been applied to remove totally irrelevant inputs), then the number of training points
required to cover the input space might be very large indeed, growing typically as nD, where n
is the number of points required along each dimension to fill that space, and D is the dimension
of the input space. Other design schemes have somewhat better sampling properties, but at some
expense.

1We use the ‘Big Oh’ notation, to denote the order of magnitude.
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• If there are a very large number of input dimensions, then estimating parameters in the correspond-
ing covariance functions can be very time consuming (and quite ill posed with a small number of
training points) even when assuming independence of length scales. If a completely isotropic dis-
tance metric is considered then the number of parameters to estimate will scale as 1

2 (D2).

These are in essence computational problems in that, at least theoretically speaking, they are able to be
solved by extensive use of computational resources. However a more elegant approach might be to assess
whether we can apply dimension reduction before the application of the emulator, in order to address
some of these issues. Of course in doing so, one has to take care that the dimension reduction itself is
not more computationally demanding than the emulation.

A key idea we wish to explore and test is that by defining a projection of the input space to a lower
dimensional manifold we will be able to exploit that lower dimensional manifold in our experimental
design, designing the simulator runs in the lower dimensional manifold, and then mapping back to the
original input space in order to evaluate the simulator output for the design points. In this manner we
hope to address the potentially devastating scaling of the number of design points with input dimension.
Another advantage that emerges is that our emulator can be learnt from the lower dimensional manifold
to the output space, simplifying the Gaussian process model, and hopefully thus permitting tighter
credibility intervals on the emulator. In the discussion we address whether this is really worth all the
effort given that an emulator could be applied in the high dimensional space directly.

We expect the dimension reduction methods to have most relevant to models with spatial or temporal
inputs, since location and time typically have strong separation distance dependent correlations, induced
by real (mixing) processes. Most simulators of fields over location or time treat these continuous, thus
infinite dimensional, spaces by discretisation. The discretisation must be sufficiently fine to resolve the
features of interest, but the correlation induces redundancy in the representation (which is required for
the internal computations in the simulators). It is quite common in many applications to attempt to
reduce the redundancy using dimension reduction methods such as principal components analysis, and
other methods.

3 The dimension reduction decision tree

Figure 1 presents a decision tree which gives an overview of which methods / approaches should be
considered in given situation. In future, this tree will be further expanded.

At the top level we need to check whether or not we have any observations2; if we have a sufficient
number of observations to characterise the probability density of the inputs p(X) then we can consider
unsupervised dimensionality reduction techniques discussed in Section 4. Also, in cases where prior elici-
tation on the inputs has provided a very informative estimate of the joint distribution of the inputs, p(X),
we could consider some form of unsupervised dimensionality reduction. In general this seems unlikely as
most priors are given over the marginal distributions of each parameter, and thus the only assumption
one could make is to assume a factorising joint distribution which is not able to capture any interesting
structure in the inputs. However if there is good prior information, then the most straightforward ap-
proach would be to sample from p(X) and treat these samples as being pseudo observations and then
applying the unsupervised dimensionality reduction approaches mentioned in Section 4 before attempting
emulation.

One of the weaknesses of the unsupervised dimensionality reduction methods is that no account is
taken of the simulator output values. It might be the case that the projection3 of the inputs needed to
explain the output distribution, rather than capture the input distribution, is either simpler, or allows
projection onto a lower dimensional manifold4. This is very related to screening, which can be seen as
the extreme of removing (projecting to a null space, classical linear algebra projection) all variables that
are not important in determining the value of the output. Supervised dimension reduction methods,

2by observations we mean, possibly indirect, measurements of the inputs to the simulator of the physical system.
3We define projection to mean the mapping from a D dimensional space to a M dimensional space, and, in our dimension

reduction context, we generally think of this as going from the high dimension space to the lower dimension space, although
this need not always be the case, unlike the application of the term in linear algebra.

4A manifold is a lower dimensional object embedded into a higher dimensional space, e.g. a (possibly curved) 2D surface
embedded into a 3D space.
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Figure 1: The decision tree for dealing with high dimensional inputs. In future this will be expanded.

discussed in Section 5, can be useful in this setting, since they consider both the inputs and the outputs
jointly in determining the dimension reduction.

Thus far the emphasis has been on the input space, which is probably the most tricky problem to
tackle, since the simulator can be used to generate a distribution over the output space, given the inputs,
which might be expected to naturally lie on some manifold even when the inputs are sampled from some
naive, possibly uniform distribution. The most obvious approach for dimensionality reduction in the
output space is to separate the outputs so that they become independent - probably using Independent
Component Analysis (ICA) (Comon, 1994); then we can construct separate emulators for each output,
and recombine them to produce the joint output distribution (since standard ICA is a linear projection,
we can construct a joint covariance matrix quite easily). In future work we will consider the output
space.

Focus of this report is on dimension reduction in the input space. The following two sections present
the unsupervised and supervised dimensionality reduction domains and the methods we considered from
each of them.

4 Unsupervised dimensionality reduction

Unsupervised dimensionality reduction approaches are most relevant to simulators of a real system,
for which there are large numbers of observations available, or were there is strong prior information
on the simulator input space which defines the joint distribution over the simulator inputs. The most
likely scenario is that the simulator does not make physical sense for certain joint ranges of inputs. If
this restriction to certain parts and combinations of state space defines a manifold, then being able to
determine this manifold will be very useful, since the simulator runs can be designed on this manifold.
This is very much related to prior elicitation and the concept of implausibility in emulation. A particular
case where we expect this might be very useful is where the inputs have spatial or spatio-temporal support
- that is where they represent spatial or spatio-temporal fields of inputs to a simulator, which will typically
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be discretised over a grid or basis function representation.
We do not present an exhaustive list of dimension reduction techniques, rather focusses on those we

believe will be most relevant, or with which we have most experience.

4.1 Principal component analysis

Principal Component Analysis (PCA) is a multivariate procedure which rotates the data such that
maximum variance is projected onto the principal axes. Essentially, a set of correlated variables are
transformed into a set of uncorrelated variables which can be ordered by reducing variance. The un-
correlated variables, often called principal components, are linear combinations of the original variables,
and in many cases the last few of these principal components can be removed with minimum loss of
information, since these are often, but not always essentially noise variables. If the data covariance
matrix has full rank, there can be as many principal components as there are variables.

Given a set of observations x̃n ∈ RQ, n = 1, . . . , N , which are centred,
∑N

n=1 x̃n = 0, in PCA we find
the principal components by diagonalising the covariance matrix given by:

C =
1
N

N∑
n=1

x̃nx̃>n , (1)

which is achieved in practice using an eigen-decomposition:

CU = UΛ, (2)

where U is a Q × Q matrix which has the unit length eigenvectors with columns u1,. . . ,uQ and Λ is
a diagonal matrix with the corresponding eigenvalues, λ1,. . . ,λQ. The eigenvectors are the principal
components and the eigenvalues are the corresponding variances.

PCA is the most commonly applied projection method. The fact that PCA defines a linear, orthog-
onal sub-space gives it favourable computational and interpretability properties, but it is also its main
limitation since any non-linear relationship between variables will not be captured.

4.2 Neuroscale

Figure 2: Schematic representation of the Neuroscale model.

Neuroscale (Lowe and Tipping, 1997) is a neural network based implementation of Sammon’s map-
ping. It is a projection method which attempts to preserve relative ‘similarity’ (in this case char-
acterised by Euclidean distance) between points in the higher-dimensional input space (X̃) and the
lower-dimensional projection space (X̂), as shown in Figure 2 (adapted from (Tipping and Lowe, 1998)).

The distance-preserving nature of the transformation is imposed by the ‘stress’ term which accounts
for the preservation of inter-point similarity

E =
N∑
i

N∑
j>i

(d∗ij − dij)2 , (3)
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where
d∗ij =‖ x̃i − x̃j ‖ , (4)

and
dij =‖ x̂i − x̂j ‖ , (5)

where the metric is in general the Euclidean one, although others might be conceived.
Points are projected from the data space onto the latent (projection) space by means of a radial

basis function (RBF) neural network. The RBF parameters are defined by minimising the ‘stress’ term,
rather than the traditional residual error minimisation that might be employed in a regression setting.
The high dimensional targets are projected onto the low dimensional representation using the RBF:

X̂ = Wφ(X̃), (6)

where W is a weight matrix and φ(·) are the basis functions.
In the experiments presented in this report we initialise Neuroscale using PCA. Initialisation of

Neuroscale is an important issue and finding the best way to initialise it is an open question.

4.3 Generative topographic mapping

The Generative Topographic Mapping (GTM) models a constrained probability distribution in the high-
dimensional data space, Q ⊂ RQ, by means of low-dimensional latent, or hidden, variables (Bishop et al.,
1998). The data is projected / visualised in the latent space, H ⊂ RL.

Figure 3: Schematic representation of the GTM model.

As demonstrated in Figure 3 (adapted from (Bishop et al., 1998)), we cover the latent space, H,
with an array of M latent space centres, zi ∈ H, i = 1, 2, ...,M . The non-linear GTM transformation,
f : H ⇒ Q, from the latent space to the data space is defined using the RBF network. We define in
the latent space with a set of K fixed non-linear basis functions (we use Gaussian functions of the same
width σ), φ : H ⇒ R, on a regular grid in the latent space. Given a point z ∈ H in the latent space, its
image under the map f is

f(zi,W) = φ(zi)W, (7)

where φ(zi) = (φ1(zi), ..., φK(zi))T and W is a K ×Q matrix of weight parameters.
GTM defines a generative probabilistic model in the data space by placing a radially symmetric

multi-variate Gaussian with zero mean and inverse variance β around images, under f , of the latent
space centres zi ∈ H, i = 1, 2, ...,M . We refer to the Gaussian density associated with the centre zi by
p(x̃ | zi,W, β). Defining a uniform prior over zi, the density model in the data space provided by the
GTM is

p(x̃ | W, β) =
1
M

M∑
i=1

p(x̃ | zi,W, β). (8)

For the purpose of data projection, we use Bayes’ theorem to invert the transformation f from the
latent space H to the data space Q. The posterior distribution on H, given a data point x̃n ∈ Q, is a
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sum of delta functions centred at centres zi, with coefficients equal to the posterior probability Ri,n that
the i-th Gaussian (corresponding to the latent space centre zi) generated x̃n:

Ri,n =
p(x̃n | zi,W, β)∑M

j=1 p(x̃n | zj ,W, β)
. (9)

The latent space representation of the point x̃n, i.e. the projection of x̃n, is taken to be the mean,∑M
i=1 Rinzi of the posterior distribution on H. The parameters of the GTM (weights W and inverse

variance β) are inferred from data using a variant of the Expectation Maximisation (EM) algorithm.
The f–image of the latent space H,Ω = f(H) = {f(z) ∈ RQ | z ∈ H}, forms a smooth L-dimensional
manifold in the data space. We refer to the manifold Ω as the projection manifold of the GTM.

4.4 Gaussian process latent variable model

Recently introduced, the Gaussian process latent variable model (GP-LVM) is a fully probabilistic,
non-linear, latent variable model that is gaining in popularity and is applied mainly in visualisation
contexts. An important characteristic of the GP-LVM algorithm is that it provides a smooth mapping
from the latent space to the data space. This property of ease and accuracy with which probabilistic
reconstructions of the data can be made, given a (possibly new) point in the latent space can be very
useful in the emulator setting where once we find a good latent space, we might want to design new
points in the latent space and obtain their corresponding input points on which the simulator can be
evaluated.

The GP-LVM relates a high-dimensional data set, X, and a low dimensional latent space, Z, using a
Gaussian process mapping from the latent space to the data space. Given a covariance function for the
Gaussian process, kX(z, z′), the likelihood of the data given the latent positions is,

p(X|Z, β̄) =
1√

(2π)ND|KX |D
exp

(
−1

2
tr(K−1

X XXT)
)

, (10)

where elements of the kernel matrix KX are defined by the covariance function, (KX)i,j = kX(zi, zj).
For the results presented in this report we use a kernel that is the sum of an RBF, a bias or constant
term, and a noise term.

kX(z, z′) = θ1 exp
(
−θ2

2
‖ z− z′ ‖2

)
+ θ3 +

δz,z′

θ4
, (11)

where θ = {θ1, θ2, ...} comprises the kernel hyper-parameters that govern the output variance, the RBF
support width, the bias, and the variance of the additive noise, respectively. The posterior can be written
as

p(Z, β̄|X) ∝ p(X|Z, β̄)p(Z)p(θ). (12)

Estimation in the GP-LVM consists of minimizing the log posterior with respect to the latent space
configuration, Z, and the hyper-parameters, θ,

L = Lr +
∑

i

ln θi +
∑

i

1
2
‖ zi ‖2, (13)

where uninformative priors are placed over the kernel hyper-parameters, and simple priors over the latent
positions. The priors over the latent positions prevent the GP-LVM from placing latent points infinitely
far apart, i.e. latent positions close to the origin are preferred. The log likelihood associated with (10)
is,

Lr =
D

2
ln |KX |+

1
2
tr(K−1

X XXT) (14)

A key benefit of the GP-LVM model is its use of (closed form) Bayesian model averaging (Lawrence,
2005), both to mitigate problems due to over-fitting with small data sets, and to remove the need to
select parameters of the function approximators.
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4.5 Other unsupervised dimensionality reduction methods

Other dimension reduction techniques, widely popular in machine learning for visualisation purposes,
include methods for locally linear embedding (Roweis and Saul, 2000), Hessian LLE (Donoho and Grimes,
2003), Laplacian Eigenmaps (Belkin and Niyogi, 2003), and Isomap (J. B. Tenenbaum and Langford,
2000). Broadly, these techniques construct a low-dimensional data representation using a cost function
that retains local properties of the data. In the emulation setting our goal is to obtain a good predictive
manifold rather than visualisation so we have not considered these approaches further. However early
results do suggest that local methods might have a role in the future since the global methods based on a
functional mapping demonstrate a tendency to many local minima. Local methods might be more robust
in determining manifolds, particularly when these are well defined and well separated, but potentially
very complex in shape.

5 Supervised dimensionality reduction

In the previous section we discussed dimension reduction methods which only use the input data, X
to determine a lower dimensional manifold. There are some dimension reduction methods which also,
or only, use output information, Y, during dimension reduction. One of the major domains in this
regard is known as Sufficient Dimensionality Reduction (SDR). The main idea of SDR for regression is
that of finding a subspace, S, such that the projection of the covariate vector, X, onto, S, captures the
statistical dependence of the response Y and X. This desideratum is captured formally as a conditional
independence assertion:

Y ⊥⊥ X|BTX, (15)

where B denotes the orthogonal projection of X onto S. The subspace S is referred to as a dimension
reduction subspace. Dimension reduction subspaces are not unique. We can derive a unique “minimal”
subspace, defined as the intersections of all reduction subspaces S. This minimal subspace does not
necessarily satisfy the conditional independence assertion; when it does, the subspace is referred to as
the central subspace.

The seminal paper of Li (1991) on Sliced Inverse Regression (SIR) started much interest in SDR for
regression. There has been a lot of interest in SDR since then and many methods based on this idea
have been developed to effectively identify the central subspace and applications of SDR (Li, 1992; Cook
and Yin, 2001; Chiaromonte and Cook, 2002; Li et al., 2005). Most of these methods make some sort
of modelling assumptions. They are effective if the modelling assumptions that they embody are met,
but if these assumptions do not hold there is no guarantee of finding the central subspace. Recently,
contributions from Xia et al. (2002) and Fukumizu et al. (2004) have provided ways to reduce the
number of assumptions. In this section we will introduce these supervised methods.

5.1 Sliced inverse regression

SIR is an effective technique for dimension reduction in non-parametric regression problems where the
response variable y depends on K unknown linear combinations of the input (explanatory) variables
(x1, . . . , xp) = xT, but the exact form of dependence is unknown. These regression problems can be
represented by the model

y = f(βT
1 x, βT

2 x, . . . , βT
Kx, ε), (16)

where f is an unknown function defined on RK+1;K < p;β1, . . . , βK are unknown p × 1 vectors, and
ε and x are independent random variables. The essential feature of the model is that instead of the p-
dimensional x we need only the K-dimensional variables (βT

1 x, . . . , βT
Kx) for predicting y. As Li (1991)

pointed out, since the function f is unknown, the parameters β1, . . . , βK are not identifiable; however,
the linear space, B, spanned by the β’s is identifiable. The space B is called the effective dimension-
reduction (e.d.r.) space and any basis of B is called a set of e.d.r. directions. Naturally, the first step
of solving the regression problem (16) is to estimate the e.d.r. space B. Then the form of the function
f can be explored based on the estimated e.d.r. space. Of course, since f and the β’s are irretrievably
confounded, the form of f usually depends on the particular choice of the representation of the e.d.r.
space.
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Under model (16) and the condition that the conditional expectation of any linear function of
x1, . . . , xp given βT

1 x, . . . , βT
Kx is also a linear function βT

1 x, . . . , βT
Kx, Li (1991) shows that the cen-

tred “inverse regression” curve E(x|y)−E(x) is confined to a K-dimensional linear subspace spanned by
Σxβ1,Σxβ2, . . . ,ΣxβK , where Σx denotes the covariance matrix of X. This relates the inverse regression
E(x|y) to the e.d.r. space B. Let z = Σ−1/2

x (x−E(x)) be the standardization of x; then the e.d.r. space
B is spanned by Σ−1/2

x η1, . . . ,Σ
−1/2
x ηK , where η1, . . . , ηK are the column eigenvectors associated with

the K largest eigenvalues of the covariance matrix Cov(E(z|y)). Thus it involves eigen analysis. The
algorithm is straightforward to implement. Further details are available in (Li, 1991).

5.2 Minimum average variance estimation

The Minimum Average Variance Estimation (MAVE) algorithm improves in several aspects over SIR
method (Xia et al., 2002). First, MAVE does not undersmoothing when estimating the link function f
(see eq. (16)) to achieve a faster rate of convergence. Secondly, MAVE can be applied to many models
including dynamical models and has been extended to other related problems such as classification (An-
toniadis et al., 2003).

To describe MAVE, let K represent the working dimension, 1 ≤ K ≤ p. For a given number K of
directions B in model (16), Xia et al. (2002) proposed to estimate B by minimising the unexplained
variance E{y−E(y|x)}2 = E{y− f(BTx)}2, where the unknown function f is locally approximated by
a linear function; that is, f(BTx0) ≈ a0 + bT

0 BT(x− x0) around some x0. The novel feature of MAVE
is that one minimises simultaneously with respect to directions B and coefficients a0 and b0 of the local
linear approximation. Hence, given a sample (xi, yi)n

i=1 from (X,y), MAVE estimates B by minimising

min
B:BTB=Ip

aj,bj ,j=1,...,n

n∑
i=1

n∑
j=1

[yi − {aj + bT
j BT(xi − xj)}]2wij , (17)

where wij are weights describing the local character of linear approximation. Initially, weights at
any point x0 are given by a multidimensional kernel function Kh, where h refers to a bandwidth:
wi0 = Kh(xi − x0){

∑n
i=1 Kh(xi − x0)}−1; i = 1, . . . , n. Additionally, once we have an estimate B̂ of

the reduced dimension space, it is possible to iterate using weights based on distances in the reduced
space: wi0 = Kh{B̂T(xi − x0)}[

∑n
i=1 Kh{B̂T(xi − x0)}]−1. Iterating until convergence results in a re-

fined MAVE.

5.3 Kernel dimension reduction

Kernel Dimension Reduction (KDR) is a recently-developed approach to SDR that uses cross-covariance
operators on Reproducing Kernel Hilbert Spaces (RKHS) to measure quantities related to conditional
independence, with the restrictive assumptions of linearity that constrain the applicability of SIR.

Let HX be a RKHS of functions on X induced by the kernel function KX (,X) for X ∈ X . We
define the space HY and the kernel function KY similarly. Define the cross-covariance between a pair of
functions f ∈ HX and g ∈ HY as follows:

Cfg = EXY [(f(X)−EX[f(X)]) (g(Y)−EY[g(Y])] . (18)

It turns out that there exists a bilinear operator ΣYX from HX and HY such that Cfg =< g, ΣYXf >HY

for all functions f and g. Similarly we can define covariance operators ΣXX and ΣYY. Finally, we can
use these operators to define a class of conditional cross-covariance operators in the following way:

ΣYY|X = ΣYY − ΣYXΣ−1
XXΣXY. (19)

This definition assumes that ΣXX is invertible; more general cases are discussed in (Fukumizu et al.,
2006).

Note that the conditional covariance operator of ΣYY|X eq. (19) is “less” than the covariance operator
ΣYY, as the difference ΣYXΣ−1

XXΣXY is positive semidefinite. This agrees with the intuition that
conditioning reduces uncertainty.

Now we are ready to link these cross-covariance operators to the central subspace. Consider any
subspace S in X . Let us map this subspace to a RKHS HS with a kernel function KS . Furthermore,

8



let us define the conditional covariance operator ΣYY|S as if we would regress Y on S. Fukumizu et al.
(2006) proves that ΣYY|X ≤ ΣYY|Z, where Z = BBTX ∈ S and B is a projection matrix such that
BBT is an identity matrix, and ΣYY|X = ΣYY|Z if and only if Y ⊥⊥ X|BTX, that is, S is the central
subspace (Fukumizu et al., 2006, Theorem 1).

Note that this theorem does not impose assumptions on either the marginal distributions of X and
Y or the conditional distribution P (Y|X). This results lead to an algorithm for estimating the central
subspace, characterised by B, for empirical samples. Further information on this algorithm is given
in (Fukumizu et al., 2006). The essence of the method is to jointly estimate a projection and regression
as in SDR, but use the ‘kernel trick’ to work in a feature space that allows for non-linear relationships.

6 Experimental results and discussion

The toy dataset generation framework presented in Boukouvalas et al. (2007) is employed for the
experiments presented here. The details of the experimental set-up is presented in Section 6.1. It
is followed by two sections presenting results on two different datasets, one with weakly non-linear
embedding of a lower-dimensional manifold into higher-dimensions and the second one with a more
non-linear embedding, qhich raises several challenging issues. Results of the effect of the degree of non-
linearity in the embedded manifold on the use of dimension reduction methods is discussed in Section 6.4.

6.1 The data generation set-up

Figure 4: Experimental set-up. The problem that is faced in the real world is that there is an input set
X̃ and outputs from the simulator y, that should be emulated. The toy data is set-up so that the real
inputs of the simulator, X are some projection of X̃, and in essence the aim is to identify these, as X̂.

Figure 4 summarises the toy-dataset generation framework used for the experiments presented here.
To generate the toy-datasets:

1. sample N base vectors, X, of dimensionality N × d using a Latin hypercube sampling from a
uniform distribution (Stein, 1987). All dimensions have the same domain [l, u];

2. obtain noiseless model outputs, y, using a chosen simulator function. For the datasets generated
for the experiments presented in this report, the simple y = f(x) =

∑D
i=1 sin(xi) was used as the

simulator function;

3. to evaluate the dimensionality reduction methods, we artificially map the base input data (X),
living in lower dimension, d, into a higher dimensional space, of dimension q. A radial basis
function (RBF) network is used for this mapping as it can provide a range of complexities for the
non-linear mapping, from approximately linear, to highly non-linear. The resulting data matrix,
mapped into higher dimension (q), X̃, is a N × q matrix.

Once the toy-data,(X, X̃,y),is generated, 50% of the the high-dimensional input points, X̃, were
used to estimate the parameters of the dimension reduction methods which were then used to map the
high-dimensional input points onto a lower-dimension space, generating X̂ for each method. A Gaussian
process emulator for y, with Matern kernel, was then trained on the lower-dimensional projection (X̂)
using the same data used to estimate the parameters of the dimension reduction methods.
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6.2 Weakly non-linear embedding dataset

Using the above set-up a dataset with 1 relevant input was generated, which was then embedded into
a 2-dimensional space using a weakly non-linear RBF mapping (so here d = 1 and q = 2). In this
context, weakly non-linear means that a very small number of basis functions was chosen and that the
parameters in these were sampled such that the embedding of the 1D line into the 2D plane was very
smooth. This simple example is used to assist in understanding the behaviour of the dimension reduction
techniques since it is possible to visualise the high-dimensional (q = 2) data and corresponding mapping
into d = 1 dimensions, obtained using the various dimension reduction techniques. N = 300 data points
were generated in the range on [−3, 3]. Our goal is to demonstrate the projection obtained using the
dimension reduction methods discussed in Section 4 and Section 5.

Figure 5 presents projection obtained using different dimensionality reduction methods we considered.
Note that mapping of the lower-dimensional base input data into higher dimension is almost linear so
as it can be seen in Figure 5(b), we have a slightly curved sin function. Not surprisingly, all dimension
reduction methods perform reasonably well. MAVE fails to map the more distorted part of the sin
curve and thus the emulator developed on the projection obtained using MAVE gives higher root mean
squared error (RMSE) compared to the emulators developed using the projection obtained using other
dimension reduction methods. RMSE values are presented in Table 1.

6.3 Non-linear mapping dataset

To address how the algorithms are able to cope with increasingly non-linear embeddings, a more non-
linear embedding was constructed. This dataset has an identical set-up as in the previous section but
here the base data is embedded into a 2-dimensional space using a non-linear RBF mapping, obtained
by sampling from a more complex mapping with larger parameter values.

X̃ X̂PCA X̂NS X̂GTM X̂GPLVM X̂SIR X̂MAVE X̂KDR

Almost linear mapping dataset 0.0000 0.0000 0.0000 0.0081 0.00143 0.0000 0.5450 0.0000
Non-linear mapping dataset 0.0000 0.1660 0.0000 0.1465 0.1025 0.7633 0.7588 0.3075

Table 1: Root mean square prediction errors in emulation on the test set (up to 4 decimal places) using
the high dimensional data X̃ and the projected data X̂ using a range of dimension reduction methods.

Figure 6 presents the results obtained using different dimension reduction methods on the more
strongly non-linear dataset. Figure 6(b) shows the non-linear embedding of the base data into high-
dimension produces a more distorted embedding with an almost circular structure. This causes all of
the linear dimension reduction methods (PCA, SIR, and MAVE) to fail. It is surprising that KDR,
inspite of being a non-linear extension of SIR, did not perform well in this scenario. We suspect that
initialisation and subsequent convergence / optimisation issues have caused the failure of KDR but this
requires further investigation. NS, GTM, and GP-LVM show promising results, and are able to capture
the latent space manifold accurately in this example.

Table 1 shows that errors in an emulator trained on the projection of the high dimensional inputs
X̃ does rather well in both cases, having a very low RMSE, but this is not overly surprising since high
dimensional simply means 2D in this case. The only dimension reduction method that is able to maintain
this level of error on this data set in the Neuroscale projection and we believe this might be related to
the distance preserving nature of the Neuroscale projection.

6.4 The effect of non-linearity of the manifold

As can be observed from the results presented in the previous section, it is important to know complexity
(non-linearity, shape) of the embedded manifold to decide which dimension reduction technique to apply
and whether they will be able to determine the manifold correctly. In our experiments, all of the methods
discussed here fail when the manifold is very complex. We also observed that an emulator developed with
all input dimensions (the high-dimensional data, X̃) almost always gives lower RMSE than an emulator
developed with projected data, X̂, using any dimension reduction technique when the simulator function
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(a) Relevant input (b) Data in HighD (c) PCA

(d) NeuroScale (e) GTM (f) GPLVM

(g) SIR (h) Using MAVE (i) KDR

Figure 5: Output mapping with the base data and the projections obtained using different dimension
reduction methods for the almost linear (weakly non-linear) mapping dataset. Training data (plus),
mean prediction using a trained GP on the test set (solid line) with error bars at 2 standard deviations
(gray area, typically very difficult to see due to the density of the training data).
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(a) Relevant input (b) Data in HighD (c) PCA

(d) NeuroScale (e) GTM (f) GPLVM

(g) SIR (h) Using MAVE (i) KDR

Figure 6: Output mapping with the base data and the projections obtained using different dimension
reduction methods for the non-linear (strongly non-linear) mapping dataset. Training data (plus), mean
prediction using a trained GP on the test set (solid line) with error bars at 2 standard deviations (gray
area).
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is periodic, although in all cases the optimal emulator is obtained by emulating the true input, X, to y
simulator, as would be expected. Were the simulator function is not periodic, it seems that where the
dimension reduction methods are able to correctly identify the manifold, the emulator in the reduced
dimension input space, X̂, performs better than using the high dimensional inputs X̃. These experiments
have thus far only considered the high dimensional space to have up to 100 dimensions, which is still
relatively low, and further work is required to assess where these methods might have more practical
relevance in very high dimensions, although in these cases serious identifiability issues exist with respect
to the projective mapping.

In this section the relative curvature measures of non-linearity presented by Bates and Watts (1980)
are used to quantify the non-linearity of the manifold embedded in higher dimension. To obtain this
non-linearity measure, the normal relative curvatures of the embedded manifold are calculated at each
latent space point, x, for different directions. Here, for each latent space point, the embedding curvature
is calculated along 16 different directions distributed uniformly in the solid angle 360◦. The sum of the
maximum of these directional curvature measures at each latent space point gives the total curvature of
the manifold which is used as a measure to quantify the non-linearity of the entire embedded manifold.
Note that the total curvature value does not give information on the shape of the manifold or the folding
which might be critical for a dimension reduction method to work. Our aim in this analysis is to see how
different dimension reduction techniques perform as the curvature measure (non-linearity) increases.

For the experiments presented in this section, again, we use the data generation setting presented
in 6.1 to generate a dataset with 1 relevant input which was then embedded into a 3-dimensional space
using an almost linear RBF mapping (so here d = 1 and q = 3). This simple example is useful to
understand the behaviour of the dimension reduction techniques as we will be able to visualise the high-
dimensional (q = 3) data and corresponding mapping (d = 1) obtained using the techniques we apply.
500 data points (N) were generated in the range on [−6, 6] ([l, u]) so there is periodic behaviour as this
simulator is a sin function. The goal is to demonstrate the behaviour of the projection obtained using
the dimension reduction methods discussed in Section 4 and Section 5 as the amount of curvature in
the embedded manifold changes. We chose one linear and one non-linear methods from Section 4 and 5.
PCA and NeuroScale from Section 4 and MAVE and KDR from Section 5.

As discussed in Section 3 in some situations we may have observational data on the inputs, without
corresponding simulator output. We can use this observed data to train unsupervised learning methods,
which might give us a better projection. To simulate such a scenario, in this experiment the entire high-
dimension training-set, X̃tra, is used to train unsupervised dimension reduction methods (PCA and NS)
but only 10% of the training-set, X̃tra, is employed to train all the emulators and supervised dimension
reduction methods (MAVE and KDR).

Figure 7 displays a scatter plot showing the relation between the total curvature of the embedded
manifold in high dimensions and the emulator RMSE on the test set using the different dimension
reduction methods for 30 different realisations of the non-linear embedding. It seems odd that the plot
does not show any striking pattern, which suggests that the simple non-linearity measure of the manifold
defined in Bates and Watts (1980) is not a reliable measure of how well non-linear projection methods are
able to recover the true underlying data generating manifold. It is likely this is related to the observation
that it is the shape of the manifold in higher dimension that is important, since a manifold that curves
back on itself is very difficult to determine using the global mappings explored in this work. It is thus
clear that further work is required to provide a guideline as to whether, or which, dimension reduction
technique would work in a given setting. It is also interesting to note that in all but one case, using
all inputs does not significantly worsen the prediction of the Gaussian process. This can be expected
for two reasons; first, so long as the embedding into the high dimensional space is sufficiently smooth,
so that the manifold does not cross or nearly touch, a Gaussian process can readily capture this high
dimensional signal. Secondly, in this example period functions are employed for the simulator, and if the
curvature is in phase with the oscillation then mapping this into the high dimensional space might even
simplify the Gaussian process, making a stationary covariance function more appropriate, which we do
observe in some cases.

Figure 8 and Figure 9 show plots of the high dimension data and projections obtained using different
dimension reduction techniques for two different realisations, one with the lowest RMSE using Neuroscale
and the other with the highest RMSE using Neuroscale respectively. It is easier to understand these
results by studying the rotation of the embedded manifold in Figure 8(b) and Figure 9(b) as one can easily
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Figure 7: The total curvature of the embedded manifold in high dimensions vs emulator RMSE on the
test set, for the set-up described in the text.

observe that even though the embedded manifold in Figure 8(b) has higher total curvature, dimension
reduction methods can obtain a good lower dimension projection of the embedded manifold in Figure 8(b)
than the embedded manifold in Figure 9(b). The embedded manifold in Figure 9(b) has a sudden turn
and is twisted at one end which makes it difficult for the dimension reduction methods to find a good
manifold. The corresponding curvature values are presented in the caption of the respective figures.

The results in Figure 8 illustrate that where it is possible to capture the manifold, then this knowledge
can be used to make more accurate predictions than using the high dimensional data directly in the
emulator inputs. Together with the significant advantage in being able to design experiments far more
robustly in lower dimensional spaces, this result seem to have some promise, however in the majority of
the cases studied in writing this report, the dimension reduction methods failed to capture the manifold.
When this occurs, as can be seen, for example, in Figure 8(c) where PCA fails to capture the mapping,
the resulting emulator has very inappropriate estimates of the covariance function parameters, largely
due to the apparently multi-valued emulator output due to the poor approximation of the manifold. The
most obvious method to address this would be to improve the fitting of the manifold, but this is a very
complex problem, and there are no general solutions.

7 Discussion on open questions

In this section we discuss some open questions which require further work:

Intrinsic dimensionality : The biggest assumption in the experiments presented here was knowledge
of the correct intrinsic dimensionality. Determining intrinsic dimensionality is a fundamental and
difficult problem. Cross validation is not a very appealing option as most of the dimension reduction
methods are computationally expensive. Methods such as Minka (2000) can provide a mechanism
to estimate bounds on the intrinsic dimensionality but for all methods we are aware of these work
only for linear mappings.

Inverting the mapping : As discussed in Section 2, one of the biggest advantages of dimension re-
duction prior to emulation could be in sequential experimental design. For this it is necessary to
invert the estimated dimension reduction mapping so that design can be carried out in the reduced
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(a) Relevant input vs output output (b) Data in HighD (c) PCA

(d) Neuroscale (e) Using MAVE (f) KDR

Figure 8: Output vs the base data and the projections using dimension reduction methods for the
realisation with lowest RMSE using NS (total curvature of this realisation is 1113.6). GP training points
(plus), extra training points used to train the unsupervised dimension reduction methods (crosses), mean
prediction using a trained GP (◦ and solid line) with error bars at 2 standard deviations (gray area).

(a) Relevant input vs output output (b) Data in HighD (c) PCA

(d) Neuroscale (e) Using MAVE (f) KDR

Figure 9: Output vs the base data and the projections using dimension reduction methods for the
realisation with highest RMSE using NS (total curvature for this realisation is 369.6). GP training points
(plus), extra training points used to train the unsupervised dimension reduction methods (crosses), mean
prediction using a trained GP (◦ and solid line) with error bars at 2 standard deviations (gray area).
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dimension space and then mapped to the high dimensional simulator input space. Not all methods
can provide such a one to one invertible mapping. Having a mapping both ways might be useful
for other tasks too, so this avenue is one we intend to explore further.

Initialisation and optimisation : It is interesting to note that initialisation of algorithms which use
non-linear models, such as Neuroscale, GTM, GPLVM, KDR, is an important issue. Models such
as these, which are not initialised correctly can readily become stuck in local minima of their cost
function (either likelihood, or posterior measure surfaces). In fact, the reason why the results of
PCA and Neuroscale on complex embeddings, such as Figure 9, are sometimes identical is because
Neuroscale is initialised using PCA and thus becomes stuck in a local minima very close to that
point. We need to explore initialisation strategies which take account of the problem at hand, to
find a more robust method for finding a global minima in the cost function. Alternatively we could
employ non-deterministic optimisation methods, such as simulated annealing (Kirkpatrick et al.,
1983) to explore the parameter space of the models more thoroughly.

Realistic experimental set-up : It is important that we apply these dimension reduction methods
in a more realistic emulation setting and also understand the results thoroughly. We are seeking
for a real-life model for which we can test our ideas. At present an attractive compromise might
be to create a more realistic toy model based on the 2D advection / dispersion of a contaminant
based on a simple, yet extensible flow model. The aim would be to write the dynamical model
such that it could provide a test bed for methods across MUCM including data assimilation and
in particular dimension reduction.

Scaling / limitations of dimension reduction techniques : Since the goal of MUCM is to deal
with complex models, we need to test these methods for their scalability. It is important to know
how far we can go with each method. One of the biggest challenges in testing these methods for
for very high-dimensional data is understanding the results. It is not easy to understand why a
method fails if we do not know the exact shape and folding of the embedded manifold in high
dimension. Additionally, methods such as GTM have computational restrictions that mean they
are only applicable where the intrinsic dimensionality is less than 3. Moreover, frequently in the
emulation setting, one has to work with O(100) data points, although Bob Parish from Energy
SciTech suggested this is really no longer the case, and increasingly more runs are possible for some
models. It can be difficult for a density modelling based dimension reduction method such as GTM
to learn an effective manifold from such a small number of data points. We foresee a set of tools
being developed to address those cases that can be treated, but there will remain problems which
are not able to be reduced in dimension.

Validation method : In these experiments, RMSE values on test set obtained using an emulator
trained in high-dimension performed almost as well as the emulator developed using the real inputs
and almost always outperformed emulators developed using the projection obtained dimension
reduced inputs. It seems that Gaussian processes generalise well into high dimensions, occasionally
performing better in high dimensions. Indeed this almost suggests that Gaussian processes might be
made more accurate by projecting the data into higher dimensions, not lower, with the projection
defined so that the covariance is most simple; i.e. stationary and isotropic, very much in the spirit
of Sampson and Guttorp (1992), although this clearly has some danger of over-fitting. It does
emphasise that the main benefit of being able to define a lower dimensional manifold is the more
efficient designs this might facilitate and the more sharp estimates of the hyper-parameters one
might expect, thus making the fixing of these less problematic in the Bayesian treatment.

Estimating the mapping and covariance jointly : At present the mapping to lower dimensions is
unconstrained; it would be interesting to add a constraint that the covariance of the emulator pro-
cess in the lower dimensional space was stationary, in a manner similar to the treatment in Sampson
and Guttorp (1992). Much work remains to be done, but such a method might have several attrac-
tions. It would also be interesting to relate the methods to the outer product emulator formulation
proposed by Jonty Rougier (personal communication).
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8 Summary

This reports explores the applicability of dimension reduction treated as a preprocessing step applied
before emulation. We considered popular unsupervised and supervised dimensionality reduction methods,
providing a top-level decision tree to help a modeller to choose appropriate dimension reduction approach
for the problem at hand. Though non-linear dimension reduction methods such as Neuroscale and KDR
gave good results for the simple models presented here, their applicability is subject to many caveats. In
particular, as the complexity of the embedding grows, the non-linear methods become increasingly likely
to fail, however emulation in the high dimensional space remains possible, if slightly sub-optimal. Apart
from the knowledge of the intrinsic dimensionality, one of the important factors which decides whether
dimension reduction prior to emulation will be useful for a particular problem at hand is the shape and
the form of the embedded manifold in higher dimension space. In further work we will address the issues
raised above. It is not yet clear whether the methods for dimension reduction explored in this report are
applicable to real high dimensional models. We are currently working with the advisory panel members
and other MUCM participants to define which models might be relevant and will shortly start to address
dimension reduction in inputs and outputs for these models.
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