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Abstract

The purpose of this paper is to quantify uncertainty associated with land
cover maps derived from satellite data. Satellites record energy reflected
from the earth’s surface and this information may be used to derive maps
of land cover. Typically these maps are thematically organised in terms of
the land surface vegetation. The final product is reported as recordings of
distinct vegetation classes at pixels across a spatial grid. The recordings
are possibly misclassified and the accuracy of these land cover maps is often
assessed by a confusion matrix derived from a comparison of the map to
a field survey at a sample of pixels across the region. The data in the
confusion matrix is small relative to the entire map and does not provide
spatial information regarding map accuracy. We propose a Bayesian method
to address these two issues. The model describes multinomial recordings
with misclassification probabilities and incorporates a spatial correlation
structure that is suited to the case where little spatial information exists.
Our method allows us to estimate the posterior distributions of the land
cover proportions for individual sites as well for the entire region, features
previously unavailable in accuracy assessment techniques. We present the
results of our method applied to a recently developed satellite derived land
cover map, the Land Cover Map 2000, for the region of England and Wales.
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1 Introduction

Since the early 1990’s a variety of satellite derived land cover maps have
been made available to, and are now becoming established within, the sci-
entific community. Satellite derived, or remote sensing, land cover maps
(henceforth referred to as RS maps) produce estimates of land cover, for
example vegetation type, via image classification of satellite data. They are
generally considered the most important source of information on contem-
porary land cover, primarily due to the high spatial resolution maps they
produce of wide geographical areas. However, RS maps are not a record of
the true vegetation cover - satellite sensors record energy incident at the sen-
sor, situated several hundreds of kilometres above the surface of the earth,
from which the land surface information is inferred. Hence, a RS map is an
estimate of the truth and the accuracy of it needs to be sensibly quantified.
This is evident from the fact that many RS maps show poor agreement,
whilst reporting the same physical quantities of interest, for the same region
(see Giri et al. (2005) and Hansen and Reed (2000)). Furthermore, users of
RS maps are frequently required to manipulate the original product to suit
their own needs and this may result in additional classification inaccuracies.
A comprehensive review of possible uncertainties of RS maps is beyond the
scope of this paper and the reader is referred to Jung et al. (2006) and Foody
(2002) for further details.

A significant question in the remote sensing literature then is how to assess
the accuracy of a RS map. Typically, accuracy is determined by compar-
ing the RS map with some form of reference data. At randomly sampled
locations (often stratified) over the region of interest the vegetation cover is
either physically reported or assessed by aerial photography and interpreted
by trained individuals. A comparison of the RS land cover map at these
points with the reference measurements yields an error or confusion matrix
which is used as a criterion to assess accuracy (see Stehman et al. (2000),
Mayaux et al. (2006) and Foody (2007)). The accuracy measures derived
from the confusion matrix fall into three categories:

1. The probability of correctly classifying pixels across the entire map,
known as the overall or map accuracy.
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2. The probability that a pixel is classified as vegetation class i, say, by
a RS map given that the true vegetation class is j, say. We refer to
these probabilities as the forward probabilities, known in the remote
sensing literature as user’s accuracy.

3. The probability that a pixel has true vegetation class i given that the
pixel is classified as vegetation class j by the RS map. We refer to
these probabilities as the backward probabilities, known in the remote
sensing literature as producer’s accuracy.

Green and Strawderman (1994) describe a Bayesian model to assess the
above accuracy measures by treating the backward probabilities as the pa-
rameters of a multinomial sample contained in the confusion matrix. The
RS map provides a known marginal probability of classification from which,
together with the backward probabilities, the forward probabilities and map
accuracy can be calculated. All accuracy measures are reported as region-
wide accuracies and the issue of spatial variation is not addressed.

In this paper we construct a Bayesian model to quantify uncertainty in the
true vegetation cover over the region of interest. By uncertainty, as opposed
to accuracy, we mean specifying a model that yields a posterior distribution
of the true vegetation classes. Our approach allows us to quantify the overall
map uncertainty as well as the spatial distribution of uncertainty within the
map. To the best of our knowledge we are the first to take such an approach.
The model is suited to the case where there exist large amounts of (possibly
misclassified) recordings across a spatial region and a small sample with
which to calibrate them. Since users of RS maps often require the original
high resolution product to be uspcaled to coarser resolutions the model
focuses on inference for an aggregation of pixels.

We introduce the model by first describing inference for a single pixel. This
stage involves identifying the backward probabilities for a pixel. In con-
strast to Green and Strawderman (1994), we model the region-wide forward
probabilities as the parameters of a multinomial sample contained in the
confusion matrix and, combined with a pixel-specific prior for the true veg-
etation classes, derive the pixel-specific backward probabilities. Next, we
extend the above model to include inference for the true proportions of
vegetation classes within some area of land comprising a number of pixels.
We refer to such an aggregate area as a site. For a given site, the true
proportions are distributed as an average of multinomial distributions with
probabilities the relevant backward probabilities for that site. For inference
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at the aggregation level it is important to incorporate the spatial correlation
of the proportions. Since we have essentially no information regarding this
correlation we describe a simple approach that induces spatial correlation
of the various proportions by modelling their variance.

We present estimates, obtained by Monte Carlo simulation, of the posterior
distributions of the true vegetation proportions at each site and for the
entire region for a recently developed RS map - the Land Cover Map 2000
(LCM2000). The motivation for analysing the LCM2000 is the authors’
involvement with the Center for Terrestrial Carbon Dynamics (CTCD). The
aim of the CTCD is to provide estimates of the terrestrial carbon balances.
To this end Woodward and Lomas (2004) developed the Sheffield Dynamic
Vegetation Model (SDGVM). One input required by the SDGVM is the
type and quantity of vegetation present and the data used in this article is
a processed version of the LCM2000 that has been transformed for use by
the SDGVM.

The paper proceeds as follows. Section 2 outlines the statistical model at the
pixel level and section 3 extends this to inference at the site level. Section
4 provides the details of the LCM2000 map and the final corresponding
product required by the SDGVM. Section 5 displays the results as maps
of simulated posterior means and standard deviations of the proportions of
vegetation classes in England and Wales and also the posterior distributions
for the region as a whole. Section 6 concludes the article and presents some
directions for future research.

2 Inference at the pixel level

Inference at the pixel level involves identifying the probabilities of the true
vegetation classes given the RS map classification (the backward probabil-
ities) and is informed by the confusion matrix. Pixel-specific inference for
the backward probabilities is not available from the confusion matrix alone
since this information is only provided at the map level. Instead, we assume
there is some region-wide characteristic of the remote sensing mechanism it-
self that contributes to the observation errors (i.e. the RS map misallocating
a vegetation class) and model the region-wide forward probabilities as the
parameters of a multinomial sample contained in the confusion matrix. The
backward probabilities can then be derived from Bayes theorem using the
forward probabilities and a prior distribution for the true vegetation classes.
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Green and Strawderman (1994) note that confusion matrices are often con-
structed from a stratified sample, and argue that the matrix therefore com-
prises multinomial samples from the backward, but not forward, probabili-
ties. While this may be true if the stratification is according to the RS map’s
vegetation classes, this is not necessarily the case in practice. A confusion
matrix may be obtained from a random sample of pixels or by stratifying
regionally. We believe that it is the forward probabilities that describe the
intrinsic error characteristics of the remote sensing and the algorithm used
to deduce vegetation class from the remote sensing data. Bayes’ theorem
then implies that the backward probabilities will depend on the mix of true
vegetation classes (which determines the prior probabilities).

Region-wide forward probabilities

Suppose we have a RS map that reports k vegetation classes at a number
of pixels across a region. Also, data is available that compares the RS map
classifications with a ground survey at a sampled number of pixels within
the region. This data is represented by the confusion matrix, the elements
of which, ct′t, are the counts of sampled pixels over the region whose RS
map classification is t′ and whose true vegetation class is t. We write

ct = (c1′t, c2′t, . . . , ck′t)T , for t = 1, 2, . . . , k

and
C = (cT

1 , cT
2 , . . . , cT

k )T .

We treat C as a multinomial sample from the region with parameters the
forward probabilities. The forward probabilities are written as

λt′t = P (x = t′|ξ = t) for t, t′ = 1, 2, . . . , k

where ξ is the true vegetation cover and x is the RS map classification. For
clarity below we write

λ = (λT
1 , λT

1 , . . . ,λT
k )T ,

where each
λt = (λ1′t, λ2′t, . . . , λk′t)T

is a vector of probabilities of the RS map classifications given that the true
classification is t. The likelihood of C, conditioned on λ, can be written as

P (C |λ) ∝
k∏

t=1

k∏

t′=1

(λt′t)ct′t . (1)
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We assume the λts are independent of each other and assign each a Dirichlet
prior density with parameters αt = (α1′t, α2′t, . . . , αk′t)T for t = 1, 2, . . . , k
such that

P (λ|α1, α2, . . . ,αk) =
k∏

t=1

P (λt|αt) (2)

where

P (λt|αt) ∝
k∏

t′=1

λ
αt′t−1
t′t for t = 1, 2, . . . , k. (3)

From (1), (2) and (3) the posterior distribution of λ is

P (λ|C) ∝ P (C|λ)P (λ|α1,α2, . . . , αk)

∝
k∏

t=1

k∏

t′=1

{
(λt′t)ct′t+αt′t−1

}
.

Therefore, conditioned on the data contained in the confusion matrix, the
posterior distributions of the region-wide forward probability vectors are
independent and Dirichlet with parameters (ct + αt) and denoted by

λt|ct, αt ∼ Di(ct + αt). (4)

For the moment assume we are only interested in inference for individual
pixels. To quantify the uncertainty of the true vegetation classes given the
RS map classification the backward probabilities,

κtt′ = P (ξ = t|x = t′) for t, t′ = 1, 2, . . . , k,

could be modelled as mathematically implied by the forward probabilities
and the prior probabilities of the true vegetation class for the entire region,

πt = P (ξ = t), for t = 1, 2, . . . , k,

since together these imply the joint distribution. Whereas Green and Straw-
derman (1994) use the RS map to obtain the known classification probabil-
ities we use the RS map to derive prior probabilities for the true vegetation
classes. We now extend the notion of incorporating a prior distribution
for the true vegetation classes to the pixel level and hence model spatial
variability within the backward probabilities.

Pixel-specific backward and prior probabilities
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Let πp
t be the prior probability that the true vegetation class is t at pixel

p. Since there is no explicit prior knowledge about the πp
t s we employ a

simplistic approach and use the RS map to provide information about the
pixel-specific priors. We equate each πp

t to be the proportion of pixels ob-
served to be in vegetation class t by the RS map in pixel p and in some
neighbourhood of pixels around p. We acknowledge that strictly these are
not prior probabilities but observed frequencies. However, we believe that
this is a good approximation to a more realistic (but computationally much
more complex) model in which the prior probabilities were given a random
field distribution with nearest neighbour covariance structure. RS maps typ-
ically provide pixels across a regular grid and we define a δ nearest neighbour
approach such that the neighbourhood forms a square around pixel p and
contains a total number of pixels

np = (2δ + 1)2.

Then, for each pixel

πp
t =

np
t

np
t = 1, 2, . . . , k.

where np
t is the number of pixels in that neighbourhood classified as vege-

tation class t. Then the pixel-specific backward probabilities are modelled
as

κp
tt′ =

λt′tπ
p
t∑k

t=1 λt′tπ
p
t

for t, t′ = 1, 2, . . . , k. (5)

The posterior distribution of these backward probabilities is then determined
by the distribution of the forward probabilities λt′t. To compute any required
inferences it is a simple matter to simulate the forward probabilities from
their Dirichlet distributions (4) and to evaluate (5) for each set of simulated
λt′ts.

We have outlined a model for the pixel-specific backward vectors that uses
the confusion matrix to model the forward probabilities, as opposed to the
backward probabilities, and incorporates spatial variability in the pixel-
specific backward probabilities via a ‘surrogate’ prior evaluated at each pixel
from the RS map. The next section describes inference for aggregating the
pixel level to the site level.
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3 Aggregation to the site level

Although RS maps are able to provide pixels at high resolutions, users of
maps often require a coarser resolution. For example, the pixels in the RS
map presented and analysed in sections 4 and 5 are required by the CTCD
to be aggregated up to a grid size compatible with the grid size on which
the SDGVM process model operates. We call these larger grid sizes sites
and now describe inference about proportions of the true vegetation classes
in a site.

Inference at the site level can only be partially addressed by aggregating the
pixel inferences within that site. That is, the expected number of pixels of a
certain category in a site is obtainable as the sum of the corresponding pixel-
specific backward probabilities. However, we cannot derive an appropriate
measure of uncertainty from the single pixels alone since this would ignore
any correlation across the site-specific proportions.

It is easy to recognise that, in addition to a region-wide process contribut-
ing to the observation errors, some spatial correlation should also exist. The
causes of error in RS vegetation classification lie in the detailed character-
istics of the vegetation and the conditions (such as weather and incidence
angle) of the RS observation. If we consider two neighbouring pixels with
the same true vegetation class, then they are likely to have similar vegeta-
tion characteristics and the RS observations are likely to have been made
under similar conditions. Hence, if one of them is misclassified by the RS
map as vegetation class t′ 6= t it is more probable that the other will also be
misclassified as t′.

Site-specific forward probabilities

To model spatial correlation in these forward probabilities explicitly would
be complex and any such model would introduce a number of parameters
for which we have essentially no data. Instead we represent the correlation
implicitly. A consequence of correlation will be that the proportions of pixels
at sites s that are correctly or incorrectly classified in particular ways will
be more variable than if they were independent. Without correlation, if we
had enough pixels in a given site, then the proportions of all the pixels in
that site having true vegetation class t that are observed to be in vegetation
class t′ will almost certainly be very close to λt′t; there will be essentially no
uncertainty. At the other extreme, if all the pixels in the site with vegetation
class t are so highly correlated that they are always observed to be in the
same vegetation class, then the resulting proportions of correct and incorrect
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classifications will be highly uncertain, being driven by the observation of
just one site.

We model this by letting the pixels still be independent, but allowing the λs
t s

to vary from the countrywide vector λt. We therefore model the site-specific
observation errors as

λs
t |λt, d ∼ Di(dλt)

for each site in the region. This introduces a single parameter, d, to con-
trol the degree of increased variability, and hence implicitly the degree of
correlation at the pixel level. Notice that we do not allow for correlation in
observations between sites. The assumption is that sites are large enough for
it to be reasonable to assume independence, although uncertainty about the
common λt vectors induces some correlation. Then, by redefining the prior
probibilities to be site-specific we construct site-specific backward vectors as

κs
tt′ =

λs
t′tπ

s
t∑k

t=1 λs
t′tπ

s
t

for t, t′ = 1, 2, . . . , k.

Before proceeding further we provide a better understanding of the role of d
in this model. Consider a site s in which there are ns

t pixels that are truly in
vegetation class t, and let ps

t′t be the proportion of these that are observed to
be in vegetation class t′. If the pixels are all classified independently with a
common forward vector λt, then the number ns

tp
s
t′t which are classified as t′

will be binomially distributed with mean ns
tλt′t and variance ns

tλt′t(1−λt′t).
Hence ps

t′t has mean λt′t and variance λt′t(1− λt′t)/ns
t , and for large ns

t this
underlies the statement previously that the proportion will almost certainly
be very close to λt′t. If they are not classified independently, then the
variance will be larger. However, we have opted not to model dependence
in the classification directly.

Instead, consider the effect of the model which allocates site s forward prob-
abilities, λs

t , the Dirichlet distribution Di(dλt). Now, conditional on the
region-wide forward probabilities, λs

t′t has a Beta density with mean λt′t
and variance λt′t(1−λt′t)/(d+1). Hence, the variance of ps

t′t conditioned on
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λt′t is

var(ps
t′t |λt′t) = E {var(ps

t′t |λs
t′t, λt′t) |λt′t}+ var {E(pt′t |λs

t′t, λt′t) |λt′t}
= E {λs

t′t(1− λs
t′t)/ns

t |λt′t}+ var {λs
t′t |λt′t}

=
1
ns

t

d

d + 1
λt′t(1− λt′t) +

1
d + 1

λt′t(1− λt′t)

=
1
ns

t

d + ns
t

d + 1
λt′t(1− λt′t) .

For large ns
t , this is effectively λt′t(1 − λt′t)/(d + 1), and so the variance

of ps
t′t under this model approximates to the variance that one would have

if just d + 1 pixels were independently misclassified. So this model can be
thought of as inducing dependence between the pixels in a site so that they
divide into d+1 independently classified clumps, but that all the pixels in a
clump are classified the same. This provides an interpretation of d in terms
of the idea of locally dependent classification. The smaller d is, the more
variability we introduce between the λs

t vectors of different pixels, and the
greater local dependence is implied.

Site-specific true vegetation class proportions

We now deal with the inference of an aggregation of pixels to the site level
and model the true proportions of vegetation classes within a site. Let the
true proportion of classification t at site s be γs

t , for t = 1, 2, . . . , k and
s = 1, 2, . . . , S. It is the uncertainty in the γs

t s that we wish to characterise.
Let the proportion of vegetation class t′ at site s according to the RS map
be gs

t′ . Letting ns be the total number of the RS map pixels in the site, this
corresponds to

ns
t′ = nsgs

t′

actual pixels observed to be in vegetation class t′ by the RS map.

For site s the vector of proportions of true vegetation classes is written as

γs = (γs
1, γ

s
2, . . . , γ

s
k)

T ,

and the site-specific backward vectors as

κs
t′ = (κs

1t′ , κ2t′ . . . , κ
s
kt′)

T , for t′ = 1, 2, . . . , k.

If we know each κs
t′ then it is natural to suppose that the individual pixels

in site s are independently observed by the RS map, and hence that the
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true vegetation class for each pixel can be independently inferred using the
relevant κs

t′ vector. Then, conditional on the relevant κs
t′s, γs is a linear

combination of k independent multinomial distributions:

γs|κs
1, κ

s
2, . . . ,κ

s
k ∼

1
ns

k∑

t′=1

M(ns
t′ , κ

s
t′),

where ns
tt′ is the number of pixels in site s observed by the RS map to be

vegetation class t′ but are actually vegetation class t and M(ns
t′ , κ

s
t′) is the

multinomial distribution over ns
t′ observations with probability vector κs

t′ .
Thus,

P (γs|κs
1, κ

s
2, . . . , κ

s
k) =

1
ns

k∑

t′=1

{
ns

t′ !∏k
t=1 ns

tt′ !

k∏

t=1

(κs
tt′)

ns
tt′

}
.

Aggregation across sites

The range over which we would expect correlations to exist in the forward
probabilities is limited, and for aggregation over a large area it becomes
difficult to assess a suitable value for d if this is regarded as a single site.
We therefore propose defining sites of such a size that we expect correlation
within sites but correlation between sites will be weak enough to ignore.
Thus, the region of interest is divided into sites of this size, and the aggre-
gation treats these as independent given the λt′ts. This is the approach used
in section 4, where we are interested in the whole of England and Wales,
but work with sites of size one-sixth of a degree.

The results presented in section 5 below contain the estimated posterior
means and standard deviations of each γs for individual sites and for the
whole region. To compute these quantities we perform the following Monte
Carlo simulation scheme:

For g = 1, 2, . . . , 10000

(1) Draw λt ∼ D(ct + α) for t = 1, 2, . . . , k

For s = 1, 2, . . . , S

(2) Draw λs
t ∼ D(dλt) for t = 1, 2, . . . , k

(3) Calculate κs
t′ , for t′ = 1, 2, . . . , k from πs and λs

t .

(4) Draw γs ∼ 1
ns

∑k
t′=1 M(ns

t′ , κ
s
t′)
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(5) Sum γss over the whole region.

end

end.

4 LCM2000 and SDGVM

The data analysed in this paper is the LCM2000 converted into a format suit-
able for use by the SDGVM process model. The LCM2000 is a RS map pro-
duced by the UK Centre for Ecology and Hydrology (CEH) (Haines-Young
et al., 2000). The base spatial resolution of the LCM2000 is a 25m × 25m
spatial grid covering Great Britain, each pixel of which contains one of 26
subclasses of vegetation types classified from spectral information collected
from various orbital sensors. The data we analyse is the LCM2000 for Eng-
land and Wales and converted into a format required by the SDGVM. To be
compatible with the SDGVM the data have been manipulated in two ways.

First, a simplified vegetation class structure is required for SDGVM and
the 26 vegetation types are grouped into 5 plant functional types (PFTs)
under the assumption that a species assigned to a given PFT will exhibit
the same behaviour in terrestrial carbon flux processes. The PFTs repre-
sented within the SDGVM for England and Wales are deciduous broadleaf
(DcBl), evergreen needleleaf (EvNl), Grassland and Crop, with an addi-
tional noncontributing class representing urban areas and bare ground that
are considered to take no part in the natural carbon cycle. This PFT is de-
noted by Bare. DcBl consists of both trees and shrubs that lose their foliage
every year. EvNl consists predominantly of coniferous trees. The Grass-
land and Crop PFTs differ in that crops are harvested at the end of the
year, thus having an artificially shortened leaf lifespan, and the harvested
biomass is removed from the system. The aggregation from 26 vegetation
classes to 5 PFTs not only reduces the computational load (an important
consideration given the high computing demands of SDGVM simulations)
but can also ease interpretation of the calculations. Although aggregation
from the original land cover scheme to the PFT level negates some errors in
the data set (those mislassifications between land cover types that belong
to the same PFT), some confusion between the resulting PFTs still persists.
By way of example, areas of shrubland which should contribute to the DcBl
PFT are often erroneously classified as one of the classes that makes up the
Grassland PFT. For details of the classification legend from vegetation types
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SDGVM PFT LCM Land cover class
DcBl broadleaf woodland, dwarf shrub heath,

open dwarf shrub heath

Crop arable cereals, arable horticulture,
non-rotational horticulture

Grassland improved grassland, set aside grassland,
natural grass, calcareous grass, acid grass, bracken,

fen, marsh, swamp,
bog, montane habitats, salt marsh

EvNl Coniferous Woodland

Bare sea, inland water, inland bare ground, estuary,
suburb and rural development, littoral rock,

littoral sediment, continuous urban,
supra-littoral rock, supra-littoral sediment

Table 1: Classification legend from PFTs (left column) to vegetation classes
(right column).

to PFTs see Table 1.

Second, the spatial resolution of the LCM2000 measurements has been al-
tered. LCM2000 is upscaled from the 25m×25m resolution to a 1/6th degree
resolution and reported as proportions. The original measurements, in the
British Ordnance Survey grid, were reprojected into geographic longitudes
and latitudes and then aggregated to 1/6th degree resolution sites in order
to match the grid size of the climate database used in SDGVM. The propor-
tions of the various PFT types were preserved in this process and a record
of the total number of pixels (or counts) contributing to each 1/6th degree
grid cell was kept. The area of a grid cell measured in degrees varies as a
function of latitude, so the count per grid cell is not constant.

The final result of the LCM2000 product used in our analysis is 707 sites rep-
resenting 1/6th degree resolution for England and Wales with the LCM2000
recordings of proportions of the 5 PFTs in each site (and the total number
of pixels in each site). For clarity, we only report the results in detail for the
PFTs DcBl, Crop, Grassland and EvNl, although Bare is included in the ac-
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tual model. Figure 1 displays maps of proportions of DcBl, Crop, Grassland
and EvNl as classified by LCM2000 for SDGVM sites across England and
Wales. Figure 1 shows that DcBl and EvNl occupy a relatively little propor-
tion of land cover across England and Wales, while Crops and Grasslands
dominate the region with Crops predominant in the east and Grasslands in
the west. Spatial correlation is obvious in all four maps. Note, there is an
area in the south-east where none of DcBl, Crop, Grassland and EvNl have
a large proportion. This is the greater London metropolitan region and is
dominated by Bare.
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Figure 1: Maps of the proportions of PFTs DcBl, Crop, Grassland and EvNl
for England and Wales as recorded by LCM2000.

Finally, we describe the confusion matrix. Fuller et al. (2002) report a confu-
sion matrix of the 26 vegetation classes between LCM2000 and the Country
Side field survey (CS2000) in the year 2000 for England and Wales. To
obtain the confusion matrix Fuller et al. (2002) stratify England and Wales
into regions of vegetation classes and individual confusion matrices are cal-
culated for each vegetation stratum. These confusion matrices are combined
to give the matrix reported in Fuller et al. (2002), each matrix contributing
a weighting according to its extent in England and Wales. We acknowl-
edge that due to the stratified sampling procedure the data contained in the
confusion matrix is not strictly a multinomial sample across England and
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Wales. Further manipulation is required since we require the measurements
to be aggregated to PFTs as opposed to vegetation classes. Table 2 reports
the aggregated confusion matrix calculated from that in Fuller et al. (2002)
into PFT form.

CS2000
LCM2000 DcBl EvNl Grassland Crop Bare

DcBl 66 3 19 4 5
EvNl 8 20 1 0 0

Grassland 31 5 356 22 15
Crop 7 1 41 289 9
Bare 2 0 3 8 81

Table 2: Confusion matrix between LCM2000 and CS2000 for England and
Wales.

5 Results

We now present the results for the LCM2000 described in section 4 and
used for the SDGVM. In this case, we have 5 PFT or vegetation classes
reported, for s = 1, 2, . . . , 707 sites across England and Wales. To run the
model it is first necessary to specify values for the hyperpior parameters
of the region-wide forward vectors, the neighbourhood structure for site-
specific prior probabilities and the parameter, d, that governs the degree of
variability across the site-specific forward vectors.

Since we have negligible prior knowledge of the region-wide forward vectors
we allocate them an uninformative prior and set

αt = (1, 1, 1, 1, 1)T , for t = 1, 2, . . . , 5.

We choose d = 1, which corresponds to thinking that all the pixels of a given
PFT in a site are classified as just two clumps. This represents a belief in
rather strong dependence in the classification over a site, so that d = 1 is
perhaps too small. However, we prefer to err on the side of assuming too
much uncertainty than too little.

Finally, the nearest neighbour parameter is set to δ = 5 sites. We note that
there is a small discrepancy introduced between inference about individual
pixels and inference about sites. The neighbourhood that we define for a
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site is not identical to the neighbourhood that we would have for individual
pixels within the site, even if the pixel neighbourhood corresponds to δ sites.
Hence the individual pixels would have prior probabilities that vary over the
site and differ from the prior probabilities used for the site. However, we
are using sites covering many pixels and will ignore this small discrepancy.

Figure 2 displays the plots of πs
t for PFTs DcBl, Grassland, Crop and EvNl.

Figure 2 captures the general pattern of the LCM2000 maps in Figure 1,
but suggests the priors should not dominate our inference.
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Figure 2: Maps of the priors of PFTs DcBl, Crop, Grassland and EvNl
(clockwise from top left respectively).

The results reported in this section are the simulated posterior means and
standard deviations (henceforth referred to simply as the means and stan-
dard deviations) of the true PFT proportions for all sites, γs. Also, we report
histograms of the estimated posterior distributions of the average of the true
proportions over all sites:

γ̄ =
1

707

707∑

s=1

γs.

As in the section 4, for clarity we only provide a detailed discussion of the
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results relating to the PFTs DcBl, Grassland, Crop and EvNl although we
provide a brief summary of the results for Bare at the end of this section.

Figure 3 displays the plots of the means of PFTs DcBl, Crop, Grassland and
EvNl for England and Wales. The means for DcBl, EvNl and Crop appear
similar to the LCM2000 maps in Figure 1. In particular, the LCM2000 mea-
surements of DcBl are at their highest in regions of the north and south of
Wales, areas in the north-west and central regions of England (correspond-
ing to the Lake and Peak Districts), and in south-eastern England and are
in agreement with the LCM2000 recordings. The LCM2000 recordings and
the means also agree that EvNl is more abundant in the Lake District and
south Wales. Additionally, Thetford forest in East Anglia (the area east
of the meridian and north of 52 dgrees), the largest lowland pine forest in
the UK, is clearly identified as EvNl. The means of Crop closely follow
the LCM2000 map which records Crop as prevalent in the north-east of
England, the mid-east coast (East Anglia) and south England although the
means appear to be smaller compared to the LCM2000 map in north-east
England and the Midlands. The means of PFT Grassland follow the same
pattern as the LCM2000 map and indicate that Wales and the Peak and
Lake Districts are mainly populated by Grassland. However, Figure 3 im-
plies the proportions of Grasslands in these regions are also smaller than
the LCM2000 measurements. In general, our model appears to estimate
values of DcBl and EvNl higher than reported by the LCM2000 and esti-
mates values of Grassland and Crop lower than reported by the LCM2000.
We return to this issue and its reason when discussing the results relating
to the region-wide PFTs below.

A major contribution of our model is to measure the uncertainty in the true
proportions of PFT for England and Wales. Figure 4 displays the standard
deviations, or uncertainty levels, of DcBl, Grassland, Crop and EvNl. The
highest standard deviations for DcBl and EvNl are 0.1024 and 0.0986, both
at longitude and latitude (55.25,-2.583), in the far north-east of England,
suggesting a high level of uncertainty in classifying these two PFTs at this
site. The highest standard deviation for Grassland is 0.1296 at longitude
and latitude (53.25,-1.917), in the Peak District, and the highest standard
deviation of Crop is 0.1418 at longitude and latitude (55.75,-2.083), in the
far north of England. Figure 4 also suggests that higher standard deviations
follow the general pattern of higher means for DcBl, Grassland and EvNl but
not for Crop. For EvNl both the means and standard deviations are rela-
tively high in the far north of England and Wales. DcBl typically has higher
standard deviations in Wales and the Peak and Lake Districts. Similarly for
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Figure 3: Maps of the simulated posterior means of PFTs DcBl, Crop,
Grassland and EvNl in England and Wales.

Grassland, higher standard deviations and means appear to coincide in the
regions of Wales and the Peak and Lake Districts. The larger uncertainties
in the proportions in these regions may arise due to the difficulty in assign-
ing vegetation classes to either DcBl or Grassland as mentioned in section
4. Crop, however, has comparatively similar standard deviations in East
Anglia (where its means are highest), central England and into the south
of England. The Midlands, and the region due south of the Midlands, is an
area where LCM2000 allocates higher levels of Crop and comparable levels
of DcBl, Grassland and EvNl, although Grassland is recorded by LCM2000
as dominating the bordering region to the west of the Midlands. Figure 4
suggests that the allocation of classes to PFTs Crop and Grasslands in this
region have high uncertainty. Figure 4 also highlights uncertainty in the
allocation of PFT Crop close to London.

Figure 5 reports histograms of the estimated posterior distributions of the
region-wide proportions, γ̄, of the average proportions of DcBl, Crop, Grass-
land and EvNl over England and Wales. Figure 5 also shows the values of the
average proportions over England and Wales as recorded in LCM2000, which
are 0.1102, 0.3209, 0.4216, 0.0316 for DcBl, Crop, Grassland and EvNl re-
spectively. For each PFT the posterior distribution shows a shift away from
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Figure 4: Maps of the simulated posterior standard deviations of PFTs
DcBl, Crop, Grassland and EvNl in England and Wales.

the LCM2000 recordings. For Grassland and Crop the shift is negative and
for DcBl and EvNl it is positive. This suggests that LCM2000 allocates
Grassland and Crop more often than exist in reality and allocates DcBl and
EvNl less often than should exist in reality. Table 3 contains the reason for
this result. Table 3 reports the marginal counts for LCM2000 for all PFTs
and the marginal counts for the ground survey data from CS2000. For
Grassland and Crop, LCM2000 over allocates the number of sites for these
PFTs in England and Wales compared to the CS2000. For DcBl LCM2000
under allocates the number of sites compared to CS2000. LCM2000 and
CS2000 report the same values of EvNl. Another way to see this is to note
the asymmetries in the confusion matrix. For instance, Grassland is quite
rarely allocated erroneously by LCM2000 to DcBl, whereas there is a much
higher probability for DcBl to be incorrectly allocated to Grassland.

Although we have not shown maps for PFT Bare, it was included in the
model and we give a brief summary of the results now. The means of Bare
closely followed the pattern of the LCM2000 recordings, which suggest Bare
is relatively sparse across England and Wales except around major urban
areas, most notably London, Birmingham and Manchester. The standard
deviations tend to be relative high in similar areas. Over all of England and
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Figure 5: Histograms of the simulated posterior distributions of the overall
PFTs DcBl, Crop, Grassland and EvNl for England and Wales. The vertical
line shows the overall LCM2000 recording.

DcBl Crop Grassland EvNl Bare
CS2000 114 323 420 29 110

LCM2000 97 347 429 29 94

Table 3: Marginal counts for England and Wales of the PFTs DcBl, EvNl,
Grassland, Crop and Bare as recorded by CS2000 (top row) and LCM2000
(bottom row).

Wales, our model allocates more Bare than is suggested by the LCM2000.
An examination at Table 3 explains why this is the case with total counts
from the CS2000 survey higher than the total counts of LCM2000.

6 Conclusion and directions for future research

In this article we have provided a general framework to model uncertainty
in satellite derived land cover maps, when the final product is reported as
site-specific proportions and have data contained in a confusion matrix with
which to calibrate the map. The method describes a multinomial model with
misclassified probabilities that includes a simple spatial correlation structure
suited to the case where little data is available regarding spatial information.
Our method allows us to quantify uncertainty for the true site-specific land
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cover types, and for the entire region, and this is new to the remote sensing
community.

For illustrative purposes we have applied our method to a land cover map
(the LCM2000) that is of recent importance to the scientific community. The
results identify specific sites where the LCM2000 has difficulty in classifying
specific vegetation types. In particular, the LCM2000 exhibits relatively
high uncertainty between the DcBl and Grasland PFTs, especially in Wales
and the Peak and Lake Districts. The problematic nature of discriminating
between land cover types that are spectrally similarly (in this case shrubs
and grasslands) in satellite data has been noted for several of the major
remote sensing land cover products (McCallum et al., 2006). Being able
to provide well-founded estimates of site-specific uncertainty with such land
cover classifications increases their value not only to an end user but also to
the remote sensing community itself. The results also show that in general
the LCM2000 overestimates the proportions of Grasslands and Crops and
underestimates the proportions of DcBl, EvNl and Bare across England and
Wales.

Future directions for applications and research include the following. First,
satellite derived land cover maps are also available at global scales. The
method in this article has been applied to England and Wales, a substantially
smaller region. Application and analysis of global maps may be of interest to
the remote sensing community and various users of such maps. Modelling
the spatial variation and correlation of land cover proportions across the
globe may require more information than has been made available to us and
incorporating external data or multiple confusion matrices for this purpose
may be of interest. Second, we assumed the data in the confusion matrix
were a multinomial sample over the region. This assumption was not strictly
true, and an interesting direction for future research would be to model
the information in the confusion matrix more accurately. Finally, we may
elicit expert prior information from the remote sensing community better
construct the priors for the observation errors of the RS map.
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