
Gaussian process emulation of dynamic
computer codes

By Stefano Conti,

Centre for Health Economics, University of York, York, YO10 5DD, UK.

sc536@york.ac.uk

John Paul Gosling, Jeremy Oakley and Anthony O’Hagan.

Department of Probability & Statistics, University of Sheffield, Sheffield, S3 7RH, UK.

j.p.gosling@sheffield.ac.uk j.oakley@sheffield.ac.uk a.ohagan@sheffield.ac.uk

Abstract

Computer codes are used widely in scientific research to study and pre-

dict the behaviour of complex systems. The run times of computationally-

intensive computer codes are often such that they are impractical to run the

thousands of times as is conventionally required for uncertainty analysis,

sensitivity analysis or calibration. In response to this problem, efficient

techniques have been developed based on a statistical representation of

the computer code. The approach, however, is less straightforward for dy-

namic computer codes, which represent time-evolving systems. We develop

a novel iterative system to build a statistical model of dynamic computer

codes, which is demonstrated on a rainfall-runoff simulator.

Some key words: Bayesian inference; Computer experiments; Dynamic

simulators; Emulation; Gaussian process; Recursive modelling

1 Introduction

Complex computer codes are used to make predictions about real world

systems in many fields of science and technology. We refer to such a computer

code as a simulator. We can represent the simulator in the form of a function

y = f(x), and a run of the simulator is defined to be the process of producing one

set of outputs y for one particular input configuration x. Throughout this paper,

we assume that the simulator is deterministic, that is, running the simulator for

the same x twice will yield the same y. The size and complexity of a simulator

1

can become a problem when it is necessary to make very many runs for different

x. For example, the simulator user may wish to study the sensitivity of y to

variations in x, which entails a large number of simulator runs. In particular,

standard Monte Carlo based methods of sensitivity analysis require thousands of

simulator runs; these are extensively reviewed by Saltelli et al. (2000).

A two-stage approach based on emulation of the simulator’s output has been

developed that offers substantial efficiency gains over standard methods; for ex-

ample, see Sacks et al. (1989), Kennedy & O’Hagan (2001) or O’Hagan (2006).

An emulator is a statistical representation of f(.) that is constructed using a

training sample of simulator runs. Uncertainty and sensitivity analyses can then

be tackled using the emulator as shown in Oakley & O’Hagan (2002, 2004). The

efficiency gains arise because it is usually possible to emulate the simulator output

to a high degree of precision using only a few hundred runs of the simulator.

Many simulators are dynamic: they model a system that is evolving over time

and operate iteratively over fixed time steps. A single run of such a simulator

generally consists of a simulation over many time steps, and we can think of it in

terms of a simpler, single-step simulator being run iteratively many times. The

single-step simulator requires the current value of a state vector as an input, and

the updated value of the state vector becomes an output. It may have other inputs

that can be classified as model-parameters and forcing inputs. Model-parameters

have fixed values for all the time steps of a simulator run. They describe either

fundamental parameters of the mathematical model or enduring characteristics

2

of the specific system being simulated by that run. Forcing inputs vary from one

time step to the next and represent external influences on the system. At time

step t, the simulator may be written in the form Yt = f(zt, Yt−1), where Yt−1 is

the state vector at the previous time step, zt = (x,wt) subsumes both the model-

parameters x and the forcing inputs wt at time step t, and the simulator outputs

the new state vector Yt. We use Yt rather than yt to differentiate between a state

vector in the series of interest and a simulator output from the training data set.

Emulation techniques can be applied to dynamic simulators in two different

ways. One approach is to use existing methods to emulate a complete multi-

step run of the simulator, while the other is to emulate the simpler, single-step

simulator and then to run the emulator iteratively. In this paper, we develop

the second of these strategies, which entails two distinct developments of the

existing methodology as described in Sacks et al. (1989) and in Conti & O’Hagan

(2007). Emulation models our uncertainty about the simulator; however, this is

secondary to the uncertainty in the simulator output caused by our uncertainty

about the model inputs. Due to the iterative nature of the emulator proposed in

this paper, we are able to handle uncertainty in the time-varying forcing inputs

that are usually taken as being known. In § 2, we review the theory of emulation

for multi-output simulators. We develop the theory so that we can emulate

dynamic simulators in § 3. To illustrate these ideas, a rainfall-runoff simulator is

considered in § 4 in which three state variables evolve over a number of days.

3

2 Emulation of complex simulators

In this section, we review the theory of emulation for multi-output simulators

as presented in Conti & O’Hagan (2007). We consider a deterministic simulator

that returns outputs y ∈ R
q given inputs x from some input space X ⊆ R

p.

Although in principle the simulator is a known function, so that y = f(x) can be

determined for any x, the complexity of the simulator means that before running

the computer code y is unknown in practice. We regard f(.) as an unknown

function, and, in line with O’Hagan (1992), we represent it by the q-dimensional

Gaussian process:

f(·) |B, Σ, R ∼ Nq (m(·), c(·, ·)Σ) . (1)

The notation in (1) means that for all x, E {f(x) |B, Σ, R} = m(x) and for

all x and x′, cov {f(x), f(x′) |B, Σ, R} = c(x, x′)Σ, where c(·, ·) is a correlation

function having the property that c(x, x) = 1 for every x. We assume a stationary,

separable covariance structure, with covariance between the outputs at any single

input given by the matrix Σ = [σjj′] and with c(·, ·) providing correlation across

X . We model the mean and covariance functions in terms of further unknown

hyperparameters B and R by

m(x) = Bth(x) and c(x, x′) = exp {−(x − x′)tR(x − x′)} . (2)

4

Here h : X 7−→ R
m is a known vector of m regression functions h1(x), . . . , hm(x)

shared by each individual function fj(·), j = 1 . . . , q; B = [β1 · · · βq] ∈ Rm,q is a

matrix of regression coefficients; and R = diag{θ−2
i } is a diagonal matrix of p pos-

itive length scale parameters. The length scales are also called ranges in Cressie

(1993) and correlation lengths in Santner et al. (2003); and the squared-inverse of

the length scales are called roughness parameters in Kennedy & O’Hagan (2001).

The selection of the prior mean structure should be driven by both experi-

ence and simplicity; a linear specification h(x) = (1, x)T has been found to be

appropriate in most applications. When we develop the emulation technique for

dynamic simulators in § 3, the linear term is important as we expect each state

variable to be strongly influenced by its previous value. The form of c(·, ·) as-

sumed in equation (2) implies that the fj(·) are smooth, infinitely differentiable

functions. We expect that the separable covariance function will serve well in

many situations even where outputs are not of a common type. The reason for

this is as follows. This covariance function assumes, for a given input, all the out-

puts respond with a common length scale, and this is what is generally perceived

to be the weakness of separability. However, if outputs are strongly correlated,

then they must necessarily have very similar length scales. If they are only weakly

correlated, then of course they can have different length scales, but we can use

independent emulators in this case.

We start by running the computer code on a pre-selected design set S =

{s1, . . . , sn} ⊂ X and this yields outputs organized in the data matrix D =

5

[fj(sr)] ∈ Rn,q. The set S is selected in accordance with some space-filling design

criterion. If p is large, then it will be expensive to have a design set S that spans

X effectively. Indeed, most of X will be an extrapolation from S. However, if

we use a good space-filling design, then most points in X will lie close to a point

in S and the emulator should provide a good representation of our uncertainty

about any point. If we were interested in the function at a point far away from

S, then h(.) may require a more complex structure for us to confident about our

emulator’s performance.

From (1) and (2), the joint distribution of the code output matrix D condi-

tional on hyperparameters B, Σ and R is the matrix-normal distribution

D |B, Σ, R ∼ Nn,q (HB, Σ ⊗ A) ,

where Ht = [h(s1) · · ·h(sn)], A = [c(sr, sl)] and ⊗ denotes the Kronecker product

operator. Letting now tT(·) = [c(·, s1) · · · c(·, sn)], standard normal theory leads

to the following conditional posterior distribution for the simulator:

f(·) |B, Σ, R,D ∼ Nq (m∗(·), c∗(·, ·)Σ) , (3)

6

where for x1, x2 ∈ X

m∗(x1) = Bth(x1) + (D − HB)tA−1t(x1) ,

c∗(x1, x2) = c(x1, x2) − tt(x1)A
−1t(x2) .

One possible way to obtain the posterior process of f(·) conditional on R

alone is by integration of (3) with respect to the posterior distribution of B

and Σ. Since any substantial information about such parameters will hardly

ever be elicited from the code developers, the conventional non-informative prior

πJ(B, Σ | R) ∝ |Σ|−
q+1

2 is selected. An alternative prior distribution, which allows

for expert judgement for B and Σ, is given in Rougier (2007b). Combining the

distribution in (3) and πJ(·) using Bayes’ theorem yields

f(·) |Σ, R,D ∼ Nq (m??(·), c??(·, ·)Σ) ,

m??(x1) = B̂th(x1) + (D − HB̂)TA−1t(x1),

c??(x1, x2) = c?(x1, x2) +
[

h(x1) − HtA−1t(x1)
]t

(

HtA−1H
)

−1 [

h(x2) − HtA−1t(x2)
]

, (4)

with B̂ = (HtA−1H)
−1

HtA−1D. Provided now that n ≥ m + q, so that the

posterior is proper, the conditional t-process with n − m degrees of freedom

f(·) |R,D ∼ Tq

(

m??(·), c??(·, ·)Σ̂; n − m
)

(5)

7

is obtained, in which Σ̂ = (n−m)−1(D−HB̂)tA−1(D−HB̂). A full Monte Carlo

Markov chain strategy for removing the dependence on the unknown length scales

in R is computationally expensive. An alternative is to use posterior estimates

of (θ1, . . . , θp). There are contrasting opinions about using this plug-in strategy:

Kennedy & O’Hagan (2001) found uncertainty about R to be relatively unim-

portant, but Abt (1999) and Nagy et al. (2007) show that prediction uncertainty

can be underestimated when using a Gaussian correlation function. However, in

our example of § 4, we found no evidence of overconfidence.

3 Emulation of dynamic simulators

3.1 Iterative use of emulators

Dynamic simulators model the evolution of state variables over a number of

time-steps. If we are interested in the state variables or some transformation of

them after a fixed number of time-steps, then ordinary emulation techniques will

suffice. However, if we want to emulate the behaviour of the simulator over a

number of time steps, we need a different formulation.

A run of the simulator over the time steps 0 to T can be expressed iteratively

8

in terms of the single-step simulator:

YT = f(zT , YT−1) = f
{

zT , f(zT−1, YT−2)
}

= . . . = f [zT , f {zT−1, . . . , f(z1, Y0)}]

= f (T) (x, z, Y0) .

where f (T)(·) represents the T step simulator, which takes as its inputs the model-

parameters x, the whole sequence z = {zt : t = 1, . . . , T} of forcing inputs and

the initial state vector Y0.

A Gaussian process emulator of f (T)(·) for given T can be constructed us-

ing the theory of § 2. Although theoretically straightforward, this approach

of directly emulating the multi-step simulator to quantify our uncertainty about

{Y0, . . . , YT} has two main disadvantages. First, the dimension of the input space

X becomes very large because it must include the whole time sequence of forcing

inputs. Second, the resulting emulator is specific to a particular T . We consider

the iterative process explicitly: we emulate the single-step simulator f(·) and use

this to emulate f (T)(·) indirectly. The dimension of the input space is then more

manageable, and the emulator can be used for simulator runs of any length.

3.2 Exact emulation of dynamic simulators

The building of the emulator of the single-step simulator f(·) is straightfor-

ward, but the technical challenge now is how to build an emulator of f (T)(·) from

9

the emulator of f(·). This cannot be done analytically. The joint distribution of

Y1 and Y2 is no longer bivariate normal due to the conditioning of Y2 on Y1. A

simple brute-force approach is to use a Monte Carlo scheme, replacing f(·) by its

emulator in the iterative scheme.

In order to train the single-step emulator, we choose a set of well-spaced points

that covers the portion of input space of interest; that is, to cover the area we

expect the state variables to move to over the T steps and the range of the forcing

inputs over the T steps. We then update our beliefs about f(·) given the training

data to arrive at the posterior distribution given in (5).

Our exact simulation approach can be understood in terms of generating

complete realizations from the posterior distribution of f(.). Suppose we have

obtained one such realization, f(i)(.). Conditional on f(.) = f(i)(.), there is no

uncertainty about Y1, . . . , YT , as we just evaluate Yt = f(i)(Yt−1, zt).

Given that we know the initial values of the state variables Y0 and the forc-

ing inputs for the first time-step z1, we can use our emulator to predict Y1.

A simulation technique is used where we draw a realization of Y1 = f(z1, Y0)

from the multivariate t-distribution implied by (5). We next draw a realiza-

tion of Y2 = f(z2, Y1), but at this step the distribution should be conditional on

f(z1, Y0) = Y1. In effect, this adds f(z1, Y0) = Y1 as an extra training run and

imposes the condition that if the series revisits the same set of state variables

and forcing inputs, then we will recover the same result we have encountered

previously. This is how the simulator behaves, as it is deterministic. To draw a

10

random realization of Y2, Y3, . . . , YT , we proceed in this sequential manner, suc-

cessively drawing each Yt from the emulator constructed by adding the random

realization of {Y1, Y2, . . . , Yt−1} to the training data D. By repeating this process

many times, we draw a sample of emulated values from the posterior distribution

of {Y0, . . . , YT}. Each time we add a simulated point to the training data set, we

update the correlation matrix A and compute its inverse. In order to do this, we

use the recursion formulae of Strassen (1969) to compute the new inverse using

the last inverse and some simple matrix arithmetic. Our simulation scheme is set

out below.

Step 1. Create design S of size n to span the space of interest.

Step 2. Evaluate f(·) at the n design points to get D.

Step 3. Estimate R for the posterior distribution of f(·)|D.

Step 4. Set N = 1 and t = 1.

Step 5. Derive posterior distribution of f(·)|D,R using (5).

Step 6. Simulate f(zt, Yt−1) from the distribution of f(·)|D,R and store Y
(N)
t .

Step 7. If t = T , set N = N + 1.

Step 8. If t = T and N ≤ NMC, goto Step 4 and reset S and D, else end.

Step 9. Add
(

zt, Y
(N)
t−1

)

to S and Y
(N)
t to D, set t = t + 1 and goto Step 5.

Consider obtaining the complete realization f(i)(.). We must sample from the

joint distribution of f(s1), f(s2), . . ., where {s1, s2, . . .} is the set of all possible

input values. In theory, this set is uncountably infinite; however, in practice,

it would be finite due to limitations of computer storage. We sample each f(s)

11

sequentially, and define Gi to be the ith simulated variable. If we prespecify that

we will sample f(s1), then f(s2)|f(s1), etc., then the marginal distribution of Gi

will be the marginal distribution of f(si). Now suppose we randomize the order

of the input values {s1, s2, . . .} in the sequential simulation to get {si1 , si2 , . . .}.

This will change the joint distribution of G1, G2, . . ., and we may no longer be

able to derive joint or marginal distributions of any Gis analytically. However,

randomising the order in which we do the sequential simulation has no effect on

the joint distribution of f(s1), f(s2), . . ., and we can ignore the fact that the order

of the inputs has been randomized when simulating f(si1), f(si2)|f(si1) etc.

In the exact simulation approach, we are randomising the order of the inputs

by setting the ith input to be the value of the (i − 1)th simulated output. This

ensures that the first T simulated outputs are precisely the T output values of

the realization f(i)(.) needed to determine Y1, . . . , YT .

New points added to the training data set when we condition during the

simulation process can be relatively close to an existing point in S. Hence, our

uncertainty about the function at the new point may be small. Using the emulator

for the single-step function, we can calculate var(f(zt+1, Yt)|D,R, Y0, . . . , Yt−1).

If var(f(zt+1, Yt)|D,R, Y0, . . . , Yt−1) is small, we have little uncertainty about the

value of f(zt+1, Yt) and adding the point to the training data set can cause the

correlation matrix A to become ill-conditioned. In this case, the point can be

taken as being known and will not be added to S.

If we find that we still have a great amount of uncertainty about {Y0, . . . , YT},

12

we can use our posterior distribution for {Y0, . . . , YT} to select additional design

points. First, we check that the predicted state variable values fall within the area

specified when creating the initial design. If the series of state variables strays

outside this area, we may want to add more training data to cover f(·)’s behaviour

in regions that the initial design did not cover. We can also use the posterior

means for the state variables at each time point along with their corresponding

forcing inputs to create a set of points where we want to reduce uncertainty.

An alternative approach to this algorithm is reviewed in Bhattacharya (2007).

It is possible to simulate the single-step function over the whole of the region of

interest using methods described in Oakley & O’Hagan (2002); the idea is to draw

from the posterior process given in equation (5) on a grid of points. Once we

have simulated the single-step function, we can use it iteratively to determine one

possible sequence {Y0, . . . , YT}. An additional assumption used by Bhattacharya

(2007) is the values of the state variables at previous time-steps are ignored; that

is, p(YT |D,D∗, Y0, . . . , YT−1) = p(YT |D,D∗) where D∗ is the set of points at which

we sample the function and the associated draws. If we repeatedly draw from the

posterior process at D∗ and D∗ is dense enough in the input space, we will get

a Monte Carlo sample that is equivalent to the sample we get from the method

detailed in this section. Both of these simulation methods can be thought of as

ways of sampling a multivariate normal vector.

The main computational difference between the two methods is the selec-

tion of the points at which we sample the single-step function. In Bhattacharya

13

(2007), the points are chosen before {Y0, . . . , YT} is sampled. In order to cover

all possibilities, a grid of points where we are going to sample at must be defined,

and there may be a lot of redundancy in this set. In our method, we select the

points as we need them.

If the single-step emulator for either method has been built from a sufficiently

large training set, the posterior uncertainty in the series of outputs will be small

and this approach will provide an accurate emulation of {Y0, . . . , YT}. The ques-

tion then arises whether iterating the single-step emulator in this way is more

efficient than directly emulating the multi-step simulator f (T)(·). To emulate

accurately a long simulator run, it will be necessary to emulate the single-step

simulator to a high degree of accuracy. Thus, relatively large numbers of train-

ing runs may be needed. However, these runs will be much faster than the full

simulator runs as they are over just a single-step. Also, the higher dimension-

ality of the input space of the full simulator will mean that a relatively large

number of training runs is required for its emulation. A second consideration

is the time taken to apply the Monte Carlo approach to compute the posterior

distribution of {Y0, . . . , YT} by numerically iterating the single-step emulator. In

contrast, direct emulation of f (T)(·) provides the posterior distribution of YT an-

alytically through the analogue of the distribution given in (5), conditional on

R. Single-step emulation will generally be more efficient than multi-step emula-

tion for dynamic simulators, but implementing the Monte Carlo exact solution

becomes a computationally intensive process. There could even be the case that

14

the single-step simulator is actually quicker to run than the emulator. We develop

an approximation that does not require the computational effort of Monte Carlo.

3.3 Approximate emulation of dynamic simulators

To avoid the repeated use of the single-step emulator in a Monte Carlo

scheme, we introduce two approximations. To motivate the first approximation,

note that in the exact computation, if the training set is large enough, then the

fact that a new point is added to this set at each iteration should have negligible

effect. We would obtain essentially the same distribution for YT if we ignored

this refinement and sampled each f(zt, Yt−1) from its posterior distribution based

only on the original training set. Accordingly, the first approximation is to replace

p(Yt|D,R, Y0, . . . , Yt−1) by p(Yt|D,R).

The second approximation is to assume that the distribution of Yt is multi-

variate normal, for all t = 1, 2, . . . , T . At t = 1, the distribution is multivariate

t, which will be very close to normal for even a moderately large training set,

but normality cannot hold for t > 1 except in the case that f(·) is linear. Nev-

ertheless, again assuming a large enough training sample, uncertainty in any Yt

should be small, and it is reasonable to assume approximate linearity over a small

enough part of the input space.

Subject to this condition first and second order moments uniquely identify

the posterior distribution of f(zt+1, Yt), given knowledge around the distribution

15

of Yt and the matrices Σ and R. Denote the posterior mean of Yt by µt and its

variance matrix by Vt. Using the assumption of approximate normality,

Yt|Σ, R ∼ Nq(µt, Vt) ,

and the recursion will derive equations for µt+1 and Vt+1 in terms of their values

at step t. Using these assumptions, it can be shown that

µt+1 = B̂TE {h(zt+1, Yt) |D} + (D − HB̂)TA−1E {t(zt+1, Yt) |D} , (6)

Vt+1 = var {m??(zt+1, Yt) |D} + E [c?? {(zt+1, Yt), (zt+1, Yt)} |D] Σ . (7)

The expectations and variance in equations (6) and (7) are given in the appendix.

Equations (6) and (7) are conditional on Σ and R; the removal of this conditioning

is also detailed in the appendix.

The computational speed of the approximation is much quicker than that of

the exact simulation method or the method of Bhattacharya (2007). Only one set

of matrix inversion calculations need to be performed to obtain results using the

approximation whereas thousands are required for the Monte Carlo scheme within

the exact simulation method. However, as this is not an exact representation

of our beliefs, we will find cases where our uncertainty about the series being

predicted is badly approximated and our posterior mean for {Y0, . . . , YT} could

be far away from the series produced by the exact simulation method. Validation

16

of the single-step emulator is therefore of great importance.

3.4 Uncertainty analysis of dynamic simulators

Throughout this section, we have only considered code uncertainty. Our

uncertainty about the model-parameters, the forcing inputs and the initial state

variables has been ignored. Nevertheless, the uncertainty in the model output

due to input uncertainty is a key aspect of analysing complex computer codes.

Uncertainty analysis can be carried out using a simple Monte Carlo scheme.

We draw one set of inputs required to run the simulator from the inputs’ distribu-

tion. We then use the approximation to the exact emulator to find our posterior

mean and variance for {Y1, . . . , YT} given these input values. We repeat this

thousands of times to find the mean and variance for {Y1, . . . , YT} given our un-

certainty about the simulator and the inputs. This is computationally expensive,

but we have found it yields results comparable to those of uncertainty analysis

in the standard emulation framework of O’Hagan et al. (1999) for just a fraction

of runs of the simulator’s single-step function. In § 4, this Monte Carlo scheme

is put to use and results are compared with the standard method.

4 Dynamic rainfall-runoff simulator

We now give an example of emulation involving a dynamic rainfall-runoff

simulator. The simulator described in Kuczera et al. (2006) is a rainfall-runoff

17

simulator that models the interaction between three water-bearing pools near a

river. Hence, the simulator has three state variables: volume of water in the soil

hs, volume of water in the ground water pool hgw, and volume of water in the

river hr; two forcing inputs: rainfall at time t, rain(t), and evapotranspiration

potential at time t, PET (t); and seven other model-parameter inputs that govern

the simulator’s differential equations. The state variables of the simulator are all

of the same type: they are all volumes of water-bearing compartments. Hence,

the choice of covariance structure, as given in (2), is appropriate for this simulator.

First, we only consider code uncertainty in the simulator output, the three

state variables over 25 time-steps. We will take the initial values as being known:

hs(0) = 1, hgw(0) = 7 and hr(0) = 1. We also take the sequences of forcing inputs

as being known. We begin by emulating the single-step function of the rainfall-

runoff simulator using 30 training runs of the simulator. The input configurations

for the initial runs are chosen using the maximin design strategy of Morris &

Mitchell (1995). This design strategy utilizes ranges of the inputs that cover

the area of the five-dimensional input space that we expect the simulator to

cover. The following ranges were used for the design: hs ∈ [0, 100], hgw ∈ [5, 9],

hr ∈ [0, 2], rain ∈ [0, 50] and PET ∈ [3, 6]. The ranges for the state variables are

selected using knowledge of the simulator and the ranges for the forcing inputs

are taken from the known sequences.

We now employ the exact simulation scheme of § 3.2 to emulate the three

state variables over 25 time-steps. Figure 1 shows the results of this. It can be

18

seen from Figure 1 that we expect two of the state variables to move outside

the range specified for the initial design. Therefore, we add 20 extra training

runs that target the unexplored areas of the state variable space; specifically,

hs ∈ [100, 125] and hr ∈ [2, 2.5]. The results of the exact simulation scheme are

then shown in Figure 2. The emulated series of state variables now mirror the

real series very closely. However, we have used 50 training runs of the single-step

simulator to emulate one run of a 25-step simulator.

The usefulness of the emulator is shown in Figures 3 and 4. Figure 3 is the

result of employing the exact simulation scheme on eight different sets of initial

values for hs and hr. Also, we can emulate the series over many more time points.

Figure 4 shows the results of emulating the state variables over 250 time-steps

using only 70 training runs of the single-step function. The approximation gives

very similar results for the rainfall-runoff simulator. The uncertainty bounds are

slightly smaller for the approximation.

Using a multi-output emulator to deal with the whole 250 step series would be

computationally more demanding: we would have a output space of 750 dimen-

sions. By breaking the process down into single time-steps, we reduce the problem

to a manageable size. However, the outer-product emulator of Rougier (2007a)

makes a high-dimensional multi-output emulator computationally feasible.

As stated in § 3.4, we are typically interested in the uncertainty in the sim-

ulator outputs due to our uncertainty in its inputs. To demonstrate this for a

dynamic simulator, we now say that we are uncertain about the initial values of

19

the three state variables hs(0), hgw(0) and hr(0); three of the most influential

model-parameters, x1, x2 and x3 say; and the sequences of the forcing inputs.

The following independent distributions were given to the uncertain state vari-

ables and model-parameters:

hs(0) ∼ N(0.4, 0.01), hgw(0) ∼ N(7.5, 1), hr(0) ∼ N(0.145, 0.0005),

x1 ∼ N(1.5, 0.4), x2 ∼ N(2, 0.36), x3 ∼ N(6.5, 0.36).

For the forcing inputs, we take a known sequence and add noise; we used uniform

noise over [0, 0.25] for rain(t) and N(0, 0.0625) for PET (t). Note that these

distributions do not represent anyone’s beliefs and are simply for illustrative

purposes. We are interested in our uncertainty about the state variables over

10 time-steps due to this input uncertainty and uncertainty about the simulator.

A simple uncertainty analysis can be performed through a Monte Carlo scheme:

first, we draw from the input distributions, then we apply the approximation of

§ 3.3 conditional on the drawn values, and we repeat these two steps many times.

We are interested in the value of the state variables over 10 time-steps. In

order to emulate the single-step function well, we required 200 single-step train-

ing runs. We also carried out an uncertainty analysis using standard emulation

techniques where 200 training runs over a 26-dimensional space were required to

produce comparable emulator accuracy for the simulator output after 10 time-

steps. Note that the 200 10-step training runs in the standard emulation case

20

are equivalent to 2000 single-step training runs. The uncertainty analysis results

for the two approaches are given in Table 1 where the variance represents our

uncertainty in the outputs due to our uncertainty about the inputs and the code.

It can be seen that the two approaches yield similar results and that the approx-

imation to the dynamic emulator uses a fraction of the single-step training runs.

In addition to the results given in Table 1, we also get the uncertainty analysis

results for all the intermediate time-steps when using the dynamic emulator, and

these are shown in Figure 5. To obtain these results, we used a simple Monte

Carlo scheme, and, for a small set of 200 single-step training runs, it requires a

lot of computational effort to obtain the uncertainty analysis results.

5 Summary

The methods presented in this paper offer solutions to the problem of em-

ulating dynamic simulators. If we consider the simulator’s single-step action on

the state variables, we can emulate any series by iteratively using an emulator of

the single-step function. We have also found that massive savings in computation

time can be made by using a simple, yet often accurate, approximation.

In situations where running the model a modest amount of times is so com-

putationally expensive that emulation through standard procedures is infeasible,

the emulation techniques detailed in this paper can offer time savings as the

single-step function does not need to be evaluated as often. In § 4, we saw that

21

we needed a tenth of the single-step evaluations using our new method to get

almost the same results as in the standard analysis. However, there can be a

much greater cost when building an emulator based on the single-step function.

This cost is application specific, and our methods will have the greatest efficiency

gains when employed on simulators that are slow to evaluate a single time-step.

The effectiveness of the emulation of dynamic simulators, either by exact

simulation or approximation, depends on the level of uncertainty about the single-

step function over the range of input values that will be visited by the simulator

in producing the true series. If the single-step function is appreciably non-linear,

then it will be difficult to keep the number of training runs down to an acceptable

level. However, as in the rainfall-runoff simulator described in § 4, the single-step

functions of dynamic simulators tend to be almost linear and system variables

can come close to repeating themselves.

Another benefit of using a single-step emulator is the potential to handle

better any numerical error in the simulator. If the simulator involves systems of

differential equations, numerical methods typically have to be used to evaluate

the single-step function that can introduce numerical error. If we are only running

the code over a single time step, this gives us an opportunity to reduce or remove

potential error by obtaining more accurate numerical solutions. This may not be

practical if we are running the simulator over many time-steps.

The theory of emulating dynamic computer codes that has been presented in

this paper has the potential to help us understand the uncertainties in computa-

22

tionally expensive simulators. By reducing the simulator down to the single-step

function that dictates how the state inside the model evolves, we have an oppor-

tunity to link the model to reality through potentially simpler expert judgements

and data assimilation at different time points. This would be a shift from the

current methods for dealing with the model-to-reality discrepancy that add on

the discrepancy at a fixed time point as set out in Kennedy & O’Hagan (2001) to

a scheme where the model-to-reality discrepancy is considered at every time-step.

Acknowledgements

The work in this paper is part of the activities of the Managing Uncertainty

in Complex Models project that is funded by a Research Councils UK grant. We

thank Peter Reichert for providing the details of the rainfall-runoff model that is

analysed in this paper. We would also like to thank the editor and the anonymous

referee for their helpful and stimulating comments on earlier drafts of this paper.

Appendix: calculation of the approximation to

exact emulation

We use the theory of § 2 to emulate the single-step simulator f(·), but

the p-dimensional argument x of this function is partitioned into the (p − q)-

dimensional z and the q-dimensional y. We partition each of the training set input

23

vectors st into the first p − q and last q components by st = (s′t, s
′′

t). Similarly,

R′ = diag
{

(θ′)−2} and R′′ = diag
{

(θ′′)−2} are the upper-left (p − q) × (p − q)

and the lower-right q × q submatrices of the diagonal matrix R.

The following result will be frequently invoked for appropriate G ∈ Rq,q, g ∈

R
q, B ∈ Rs,q and b ∈ R

s:

E
[

(BYt + b) exp
{

−(Yt − g)TG(Yt − g)
}]

= |2VtG + Iq|
−

1

2

{

B
(

2G + V −1
t

)

−1 (

2Gg + V −1
t µt

)

+ b
}

× exp
{

−(µt − g)T
(

2Vt + G−1
)

−1
(µt − g)

}

.

Using (4), the equation for µt+1 is given by

µt+1 = E {f(zt+1, Yt) |D} = E {m??(zt+1, Yt) |D}

= B̂TE {h(zt+1, Yt) |D} + (D − HB̂)TA−1E {t(zt+1, Yt) |D} , (8)

where we have used the first approximation to justify independence of Yt and

the f(·) because the latter is treated as a new realization of the emulator. Two

expectations need to be evaluated. The first will depend on the form of h(·),

but, in the widely used case h(x)T = (1, xT), we have E {h(zt+1, Yt) |D}T =

24

(1, zT
t+1, µ

T
t). The second expectation is a vector that for r = 1, . . . , n is

E {tr(zt+1, Yt) |D,R} = exp
{

−(zt+1 − s′r)
TR′(zt+1 − s′r)

}

· E
[

exp
{

−(Yt − s′′r)
TR′′(Yt − s′′r)

}

|D
]

= |2VtR
′′ + Iq|

−
1

2 exp
{

−(zt+1 − s′r)
TR′(zt+1 − s′r)

}

· exp
{

−(µt − s′′r)
T

(

2Vt + R′′−1
)

−1
(µt − s′′r)

}

. (9)

The equation for Vt+1 can be decomposed into two parts by

Vt+1 = var {f(zt+1, Yt) |D,R, Σ}

= var {m??(zt+1, Yt) |D,R} + E [c?? {(zt+1, Yt), (zt+1, Yt)} |D,R] Σ, (10)

again by the Law of Iterated Expectations. The first term in (10) is given by

var {m??(zt+1, Yt) |D,R} = B̂Tvar {h(zt+1, Yt) |D} B̂

+ B̂Tcov {h(zt+1, Yt), t(zt+1, Yt) |D,R}A−1(D − HB̂)

+ (D − HB̂)TA−1cov {t(zt+1, Yt), h(zt+1, Yt) |D,R} B̂

+ (D − HB̂)TA−1var {t(zt+1, Yt) |D,R}A−1(D − HB̂).

(11)

25

Now, in the case h(x)T = (1, xT) it follows that

var {h(zt+1, Yt) |D} =
(

0 0 0
0 0 0
0 0 Vt

)

, (12)

cov {t(zt+1, Yt), h(zt+1, Yt) |D,R} = (0 0 cov {tl(zt+1, Yt), Yt |D,R}) . (13)

Then the elements of the remaining terms required for the evaluation of (11) are

derived using (9) and the following two results. First, for r, l = 1, . . . , n,

E {tr(zt+1, Yt)tl(zt+1, Yt) |D,R}

= exp
{

−(zt+1 − s′r)
TR′(zt+1 − s′r) − (zt+1 − s′l)

TR′(zt+1 − s′l)
}

· E
[

exp
{

−(Yt − s′′r)
TR′′(Yt − s′′r) − (Yt − s′′l)

TR′′(Yt − s′′l)
}

|D,R
]

= |4VtR
′′ + Iq|

−
1
2 exp

{

−1
2
(s′′r − s′′l)

TR′′(s′′r − s′′l)
}

· exp
{

−(zt+1 − s′r)
TR′(zt+1 − s′r) − (zt+1 − s′l)

TR′(zt+1 − s′l)
}

· exp

[

−
{

µt −
1
2
(s′′r + s′′l)

}T
(

2Vt + 1
2
R′′−1

)

−1
{

µt −
1
2
(s′′r + s′′l)

}

]

.

26

Then for l = 1, . . . , n,

E {tl(zt+1, Yt)Yt |D,R} = exp
{

−(zt+1 − s′l)
TR′(zt+1 − s′l)

}

· E
[

exp
{

−(Yt − s′′l)
TR′′(Yt − s′′l)

}

|D,R
]

= |2VtR
′′ + Iq|

−
1

2 exp
{

−(zt+1 − s′l)
TR′(zt+1 − s′l)

}

· exp
{

−(µt − s′′l)
T

(

2Vt + R′′−1
)

−1
(µt − s′′l)

}

·
(

2R′′ + V −1
t

)

−1 (

2R′′s′′l + V −1
t µt

)

.

Finally, letting Tr(·) denote the matrix trace operator, some linear algebra

manipulations allow to compute the second summand in (10) via

E [c?? {(zt+1, Yt), (zt+1, Yt) } |D,R]

= 1 − Tr
[{

A−1 − A−1H
(

HTA−1H
)

−1
HTA−1

}

E
{

t(zt+1, Yt)t
T(zt+1, Yt) |D,R

}

]

+ Tr
[

(

HTA−1H
)

−1
E

{

h(zt+1, Yt)h
T(zt+1, Yt) |D

}

]

− 2Tr
[

A−1H
(

HTA−1H
)

−1
E

{

h(zt+1, Yt)t
T(zt+1, Yt) |D,R

}

]

.

These results are conditional on the unknown parameters in Σ and R. As in

§ 2, we advocate simply plugging in an estimate of R. A method of marginalising

with respect to Σ is documented below.

27

Marginalization w.r.t. the dispersion matrix Σ

The complex way in which the dispersion and length scale matrices Σ and R

enter formulae (8) to (10) precludes any closed-form marginalization. Focusing

upon Σ, it is apparent that brute-force integration based on sampling from an

inverse-Wishart population is computationally too inefficient to be pursued. A

reasonable alternative was sought in integrating over a more tractable space,

in the hope of significantly simplifying the current (q q+1
2

)-dimensional problem.

This was attained by recalling from multivariate probability theory that the Stu-

dent’s process (5) can be defined equivalently as follows: by mixing the dis-

tribution of [f(·) |R,D] ∼ Nq (m??(·), c??(·)Σ) with the p.d.f. of [Σ |R,D] ∼

W−1
q

(

(n − m)Σ̂; n − m
)

or by mixing [f(·) | ξ, R,D] ∼ Nq

(

m??(·), ξc??(·)DTGD
)

,

where G = A−1 − A−1H
(

HTA−1H
)

−1
HTA−1, with an auxiliary r.v. ξ ∼ χ−2

n−m.

It becomes possible to efficiently marginalize Σ out of formulae (8) to (10)

just by applying the Law of Iterated Expectations while conditioning on ξ rather

than on Σ. In practical terms, in the above derived formulae the dispersion

matrix Σ should be replaced by ξDTGD, and thereafter the auxiliary quantity ξ

be integrated out via some one-dimensional numerical technique. For instance,

28

we have

E {f(zt+1, Yt) |R,D} = E [E {f(zt+1, Yt) | ξ, R,D} |R,D]

= E
[

B̂TE {h(zt+1, Yt) | ξ, R,D} + (D − HB̂)TA−1

·E {t(zt+1, Yt) | ξ, R,D} |R,D] ,

where, for example, E {t(zt+1, Yt) | ξ, R,D} = E
{

t(zt+1, Yt) |Σ = ξDTGD,R,D
}

.

Marginalization w.r.t. the length scales

For simplicity, it is assumed that the length scales are a priori independent of

both B and Σ: recalling the prior proposed in § 2 for (B, Σ), this leads to the

full prior

π(B, Σ, R) ∝ πR(R)|Σ|−
q+1

2 ,

with πR(·) deliberately left unspecified. Utilization of this prior in combination

with the matrix-normal likelihood given in § 2 yields, via Bayes theorem, the full

posterior for the hyperparameters

π(B, Σ, R |D) ∝ πR(R)|A|−
q

2 |Σ|−
n−m+q+1

2 exp

{

−
1

2

[

Tr
(

DTGDΣ−1
)

+Tr
{

(B − B̂)THTA−1H(B − B̂)Σ−1
}]}

29

We can integrate out the matrices B and Σ; this yields the marginal posteriors:

π(Σ, R |D) ∝ πR(R)|A|−
q

2 |HTA−1H|−
q

2 |Σ|−
n−m+q+1

2

× exp
{

−1
2
Tr

(

DTGDΣ−1
)}

,

πR(R |D) ∝ πR(R)|A|−
q

2 |HTA−1H|−
q

2 |DTGD|−
n−m

2 , (14)

the latter being of direct interest for drawing inferences on the length scales.

In our example of § 4, we found the mode of the distribution in (14) and used

this estimate as our value for R. As a concluding remark, characterising the

smoothness of the code’s response surface by means of (14) implies that input

variables exhibit the same degree of smoothness throughout the whole emulation.

Although for many simulators this is arguably realistic, accounting for time-

dependent length scales is computationally expensive and often unnecessary.

References

Abt, M. (1999). Estimating the prediction mean squared error in gaussian
stochastic processes with exponential correlation structure. Scandinavian Jour-
nal of Statisitcs 26 563–578.

Bhattacharya, S. (2007). A simulation approach to bayesian emulation of
complex dynamic computer models. Bayesian Analysis 2 783–816.

Conti, S. & O’Hagan, A. (2007). Bayesian emulation of complex multi-output
and dynamic computer models. Tech. rep., Research report 569/07, Depart-
ment of Probability and Statistics, University of Sheffield. Submitted to Journal
of Statistical Planning and Inference.

Cressie, N. (1993). Statistics for spatial data (rev.ed.). New York: Wiley.

30

Kennedy, M. & O’Hagan, A. (2001). Bayesian calibration of computer models
(with discussion). J. R. Statist. Soc. Ser. B 63 425–464.

Kuczera, G., Kavetski, D., Franks, S. & Thyer, M. (2006). Towards a
bayesian total error analysis of conceptual rainfall-runoff models: characterising
model error using storm-dependent parameters. Journal of Hydrology 331 161–
177.

Morris, M. & Mitchell, T. (1995). Exploratory designs for computer exper-
iments. J. Statist. Planning and Inference 43 381–402.

Nagy, B., Loeppky, J. L. & Welch, W. J. (2007). Fast bayesian inference
for gaussian process models. Tech. rep., 230, Department of Statistics, The
University of British Columbia.

Oakley, J. & O’Hagan, A. (2002). Bayesian inference for the uncertainty
distribution of computer model outputs. Biometrika 89 769–784.

Oakley, J. & O’Hagan, A. (2004). Probabilistic sensitivity analysis of com-
plex models: a bayesian approach. J. R. Statist. Soc. Ser. B 66 751–769.

O’Hagan, A. (1992). Some bayesian numerical analysis. In Bayesian Statistics 4
(eds. Bernado, J.M. et al.). Oxford: Oxford University Press, 345–363.

O’Hagan, A. (2006). Bayesian analysis of computer code outputs: a tutorial.
Reliability Engineering and System Safety 91 1290–1300.

O’Hagan, A., Kennedy, M. & Oakley, J. (1999). Uncertainty analysis
and other inference tools for complex computer codes (with discussion). In
Bayesian Statistics 6 (eds. Bernado, J.M. et al.). Oxford: Oxford University
Press, 503–524.

Rougier, J. (2007a). Efficient emulators for multivariate deterministic func-
tions. Tech. rep., Department of Mathematics, Bristol University.

Rougier, J. (2007b). Lightweight emulators for complex multivariate functions.
Tech. rep., Department of Mathematics, Bristol University.

Sacks, J., Welch, W., Mitchell, T. & Wynn, H. (1989). Design and
analysis of computer experiments. Statistical Science 4 409–423.

Saltelli, A., Chan, K. & Scott, E., eds. (2000). Sensitivity Analysis. New
York: Wiley.

Santner, T., Williams, B. & Notz, W. (2003). The Design and Analysis of
Computer Experiments. New York: Springer.

Strassen, V. (1969). Gaussian elimination is not optimal. Numerical Mathe-
matics 13 354–356.

31

0 5 10 15 20 25t

0

40

80

120

0 5 10 15 20 25t
5.0

5.5

6.0

6.5

7.0

7.5

8.0

hs hgw

0 5 10 15 20 25t
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

hr

Figure 1: Posterior medians (dashed) and 95% credible intervals (dotted) for
twenty-five time-steps and the actual series (solid).

32

0 5 10 15 20 25t

0

40

80

120

0 5 10 15 20 25t
5.0

5.5

6.0

6.5

7.0

7.5

8.0

hs hgw

0 5 10 15 20 25t
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

hr

Figure 2: Posterior medians (dashed) and 95% credible intervals (dotted) for
twenty-five time-steps and the actual series (solid) with twenty extra training
runs.

33

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
t

0

1

2

0

1

2

0

1

2

h_
r(

t)

h_r(0) = 0.5

h_r(0) = 1

h_r(0) = 2

h_s(0) = 1 h_s(0) = 5h_s(0) = 0.5

Figure 3: Nine sets of 95% posterior credible intervals for twenty-five time-steps
for different values of hs(0) and hr(0).

34

0 50 100 150 200 250t

0

40

80

120

0 50 100 150 200 250t
2

3

4

5

6

7

8

9

hs hgw

0 50 100 150 200 250t
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

hr

Figure 4: Posterior medians (dashed) and 95% credible intervals (dotted) for
two-hundred-and-fifty time-steps and the actual series (solid).

35

Standard emulation Approximation
Mean Variance Mean Variance

hs(10) 13.92 0.60 13.91 0.65
hgw(10) 6.23 0.81 6.23 0.80
hr(10) 0.010 0.005 0.010 0.007

Number of single-step
evaluations 2000 200

Table 1: Uncertainty analysis results for the rainfall-runoff simulator after 10
time-steps.

36

0 2 4 6 8 10t

0

5

10

15

20

0 2 4 6 8 10t
4

5

6

7

8

9

10

hs hgw

0 2 4 6 8 10t
-0.500

-0.375

-0.250

-0.125

0.000

0.125

0.250

0.375

0.500

hr

Figure 5: Posterior medians (dashed) and 95% credible intervals (dotted) for ten
time-steps including uncertainty about the simulator inputs.

37

