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Abstract

An emulator is a statistical representation of an expensive computer model that

gives fast probabilistic predictions of the output. This article concerns emulators for

computer models with multiple outputs that represent different kinds of quantities.

Our approach uses multivariate Gaussian processes to model the uncertainty in the

input-output relationship of the computer model. The challenge is to specify a covari-

ance structure that adequately captures two kinds of correlation: correlation over the

input space, and correlation between different outputs. We propose emulators with

nonseparable covariance structures, using convolution methods and the linear model of

coregionalization.

Much of the previous work on multivariate emulation has considered cases where the

output represents values of a single type of physical quantity at multiple points in a field.

In such cases it may be appropriate to treat the two kinds of correlation as separable.

However, we show that when the outputs represent multiple types of physical quantities,

a separable covariance can be too restrictive, resulting in a misspecified spatial corre-

lation functions for some or all of the outputs. We consider methods for constructing

nonseparable covariances, which allow outputs to possess different correlation functions.

We present case studies from engineering and from climate science. We implement

separable and nonseparable multivariate emulators, comparing them with each other

and with an independent outputs approach. We show that the nonseparable emulators

have advantages over the other approaches. This becomes most apparent when we

consider using the emulators to make predictions of functions of the multiple outputs.

KEYWORDS: Computer experiment; Gaussian process; metamodel; convolved pro-

cess; coregionalization.

1 Introduction

Deterministic computer models are used in many fields of science and technology to simulate

complex processes. Statistical problems with using such models include: assessing uncer-

tainty in model outputs due to uncertainty in model inputs McKay et al. (1979); predicting

model outputs at untried input values for computationally expensive models Sacks et al.

(1989); identifying the ‘most important’ inputs using sensitivity analysis (?; Oakley and

O’Hagan, 2004); calibrating models to noisy physical data (Kennedy and O’Hagan, 2001;

?). Santner et al. (2003) review these methods, and some recent developments are given in

a special issue of Technometrics (?).

For computationally expensive computer models, an important step is to build an em-

ulator: a statistical model of the computer model’s input-output relationship. Regression

methods can be used to construct emulators, with nonparametric regression using Gaussian

processes (GPs) being a popular choice. Within the field of computer experiments, Sacks

et al. (1989) first used GP regression for modeling computer code output, and Currin et al.

(1991) gave a Bayesian treatment. Earlier, GPs were used in geostatistics for spatial in-

terpolation in the technique known as kriging (Journel and Huijbregts, 1978). GPs have

since become popular in the machine learning community for regression and classification

(Rasmussen and Williams, 2006).

Early work on emulators was for computer models with one scalar output (univariate

emulators), but attention has since turned to emulating computer models with more than
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one output. A simple approach is to consider the outputs as a collection of separate univari-

ate functions, and emulate each function independently. It is likely, though, that multiple

outputs from a single model will be related, so modeling prior beliefs about them as being

independent may result in losing information. To capture this information, a multivariate

emulator models the outputs jointly.

We categorize multivariate output from computer models into two classes. The first

class comprises output from a computer model that simulates a quantity that varies over

some continuous field, often space or time. Here, each output gives the value of the quantity

at a particular location in the field. The index of the output specifies the location, and we

can define a metric on the output index, for example spatial distance or time lag. We refer

to this class of multivariate output as field output. Kennedy and O’Hagan (2001) emulate

field output by considering the output index as a new input to the model and using a

univariate emulator with a stationary parametric covariance function. Conti and O’Hagan

(2010), McFarland et al. (2008) and Bayarri et al. (2009) use this approach. Rougier

(2008) emulates field output directly but includes parametric regression terms on the output

index, using the between-output metric. Higdon et al. (2008) calibrate a computer model

with highly multivariate output, using principal components to reduce the dimensionality.

Bayarri et al. (2007) consider computer models whose output is functional, which can be

seen as a limiting case of field output. They use a wavelet representation of the function

and emulate the wavelet coefficients with independent univariate emulators.

The second class of multivariate output arises from computer models that simulate

different types of quantities simultaneously, and the index of the output is merely a label.

We refer to this class of multivariate output as multiple-type output. A computer model

with multiple-type output, considered in this paper, is the Simple Climate Model (SCM)

(Urban and Keller, 2010). The SCM has three outputs: atmospheric CO2 concentration,

ocean heat uptake, and global surface temperature. Multiple-type output does not have

an obvious measure of distance between the outputs, so it is unwise to model the between-

output dependencies using a parametric covariance function. Traditionally, the outputs are

either emulated independently or jointly with a separable covariance structure.

1.1 Outline and scope

This paper considers emulating multiple-type output. We focus on careful modeling of

the between-output dependencies through the emulator covariance function. In section

2 we review the separable covariance approach. This appeals due to its mathematical

tractability, but has limitations. We propose two nonseparable covariance structures for

multivariate emulators: one using convolution methods, and another using the linear model

of coregionalization. In both cases we suggest adaptations of the standard implementation

in order to make the methods better suited for emulation.

In section 3 we present case studies, from engineering (using a finite element model of

an aircraft), and from climate science (using a climate simulation model). We implement

separable and nonseparable multivariate emulators, comparing them with each other and

with multiple independent univariate emulators. We find that the separable multivariate

emulator often results in poorer marginal predictions of single outputs than the independent

univariate emulators. The nonseparable emulators retain the marginal advantages of the
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independent emulators while offering a multivariate treatment. The importance of the

multivariate treatment becomes clear when we consider combining predictions of multiple

outputs. In both case studies we consider a function of the outputs, demonstrating that

ignoring the between-output dependencies leads to poor predictions of the function.

2 Approaches to multivariate emulation

Consider a deterministic computer model with a p-dimensional input x ∈ X ⊂ R
p and a

vector of outputs y ∈ R
k , represented by the function η : X → R

k . Its outputs are regular,

meaning that the same k outputs are observed every time the model is run. If k = 1,

then the conventional approach is to represent the uncertainty in η(.) using a GP prior

with a parametric covariance function. Kennedy and O’Hagan (2001) extend this model for

k > 1 by including the output index as an additional input and proceeding with a univariate

GP prior on the augmented input space X ∗ ⊂ R
p+1 . The between-output covariances is

dealt with by the extended covariance function C(., .) : X ∗ × X ∗ → R . However, to use a

parametric covariance function we need a metric for measuring the distance between two

outputs. Hence this approach is most suitable for field output.

In this paper we are interested in multiple-type outputs. We assume that the outputs

represent a variety of different quantities, so it is not sensible to impose a parametric form

for the between-output covariances. Instead, we model the between-output dependencies

directly using a multivariate GP prior:

η(.) = m(.) + z(.),

m(.) = (Ik ⊗ h(.)T )β, (1)

z(.)|θ ∼ GPk[0,C(., .)].

In m(.), the prior mean function, h(.) is a vector of q regressors on X and β is a vector of

kq unknown coefficients. The residual process, z(.), has a k × k matrix-valued covariance

function, C(., .), which is controlled by some hyperparameters θ .

2.1 Modeling choices for the mean function

Rougier et al. (2009) gathers detailed information about the computer model structure and

uses this to include a large number of regressors in the prior mean function. Information

about the structure is obtained both through eliciting the model author’s beliefs and from

the data using stepwise regression techniques. If the mean function fits η(.) well then the

variance attributable to the residual process z(.) will be small, and modeling choices for z(.)

will be less important. A well chosen mean function can reduce the residual correlation be-

tween outputs, allowing us to model the individual output residual processes independently.

If the prior mean function represents all prior knowledge about the form of the input-output

relationship, then uncertainty in the residual process, conditional on the mean function,

should be equal in all parts of the input space. This allows us to use a stationary covariance

function for z(.), which is desirable since, although it is possible to construct a covariance

function that is non-stationary over X (e.g. Schmidt and O’Hagan, 2003, Gelfand et al.,

2004, Gramacy and Lee, 2008), a stationary covariance is more straightforward to specify.
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Here, we choose instead to capitalize on one the appeals of the GP model: its ability to

learn the structure nonparametrically, without the need to manually approximate it with

regression functions. However, we wish to retain the convenience of stationarity in z(.), so

we favor a minimal regression structure that represents our prior beliefs about the unknown

function, leaving a residual uncertainty that is equal in all parts of the input space. In

our examples we use a linear regression function on the input-space, hT (x) = (1,xT ),

with a weak improper prior for the regression hyperparameters, π(β) ∝ 1. With a linear

function we will capture any global trends in the outputs, and assume that beyond this our

uncertainty in the output is stationary.

2.2 Prior to posterior analysis

The computer model is run at training design points X = (x1, ...,xn), giving training data

outputs yT = (y1
T , ...,yk

T ), where yj
T = (ηj(x1), ..., ηj(xn)) is the vector of data from

the j th output. The design is usually selected using some space-filling criterion; in our

examples we use maximin Latin hypercube designs (McKay et al., 1979). Conditioning on

y and integrating over β , we obtain

η(.)|y,θ ∼ GPk{m‡(.),C‡(., .)}, (2)

where, for a set of ń new input points X́ = (x́1, ..., x́n),

m‡(X́) = H́(X́)β̂ + F(X́)V−1(y − Hβ̂),

C‡(X́, X́) = C(X́, X́) − F(X́)V−1F(X́)T +

(H́(X́) − F(X́)V−1H)(HTV−1H)−1(H́(X́) − F(X́)V−1H)T ,

with β̂ = (HTV−1H)−1HTV−1y . The notation here is as follows:

H = Ik ⊗ h(X)T ,

H́(X́) = Ik ⊗ h(X́)T ,

V = C(X,X),

F(X́) = C(X́,X).

The conditioning on the covariance function hyperparameters θ cannot, in general,

be removed analytically. A fully Bayesian approach is to update θ using MCMC, but

then we no longer have a closed form for the posterior distribution, and predictions must

be presented as a sample. This approach increases the computational burden, since each

MCMC update requires the inversion of the full nk×nk matrix V , potentially making the

emulator itself slow to use. Following Kennedy and O’Hagan (2001), Conti and O’Hagan

(2010), Rougier et al. (2009), and others, we estimate θ and treat it as known. As this

does not take into account the uncertainty in θ , we use detailed diagnostics to validate the

resulting predictive distribution.
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2.3 Modeling choices for the covariance function

Since the covariance function C(., .) is stationary given the process mean, we may write

its elements as Cij(., .) = Σijcij(., .), where Σ = {Σij} is a k × k covariance matrix, and

{cij(., .) : i, j = 1, ..., k} is a set of spatial correlation functions on X × X . The covariance

between the outputs at any given input point is given by Σ . The spatial correlation

functions express how rapidly our uncertainty in the outputs grows as we move away from

an observed input point. We call cii(., .) the direct-correlation function for output i , and

cij(., .) the cross-correlation function for correlations between outputs i and j , i 6= j . We

denote the collection of hyperparameters that govern the spatial correlation functions as

Φ .

A multivariate covariance structure must ensure that for any n and any design (x1, ...,xn),

the resulting nk × nk covariance matrix obtained via C(., .) is positive semi-definite. This

will not necessarily be the case for C(., .), as defined above, with an arbitrary choice of Σ

and spatial correlation functions cij(., .). For example, if two outputs have different spatial

correlation functions, then they must in some way differ as functions of the input space,

so it would be contradictory for them to be highly correlated with each other. We now

consider how to construct valid covariance functions.

2.4 Separable covariance functions

Conti and O’Hagan (2010) define a valid covariance structure using a single function for all

of the direct and cross-correlation functions, c(., .)ij = c(., .) ∀i, j . The between-outputs

covariance and the spatial correlation are separable:

C(., .) = Σc(., .). (3)

We refer to the emulator that uses model (1) with the covariance function (3) as SEP. A

common choice for c(., .) in GP emulation is the squared-exponential function c(x,x′) =

exp{−∑p
i=1 φi(xi − x′

i)
2}. This has one ‘roughness parameter’ φi corresponding to each

input dimension, which controls how rapidly uncertainty in the output grows we move away

from a design point in the direction of that input. Rasmussen and Williams (2006) describe

other correlation functions.

An advantage of the separable covariance approach is mathematical tractability. The

covariance matrices in the posterior process (2) have the Kronecker product factorizations

V = Σ ⊗ A, and F(X́) = Σ ⊗ T(X́), where A = c(X,X) and T(X́) = c(X́,X), signifi-

cantly speeding up computation. Also, the separable covariance has a conjugate prior for

Σ : Following Conti and O’Hagan (2010), we use the improper inverse-Wishart type prior

π(Σ) ∝ |Σ|−
(k+1)

2 , giving a proper inverse-Wishart posterior for Σ . This allows Σ to be

analytically integrated out of the posterior process (2), yielding a multivariate Student-t

posterior conditional only on Φ :

η(X́)|y,Φ ∼ Stk{n − q,m‡(X́), Σ̂ ⊗ c‡(X́, X́)}.
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where

m‡(X́) = H́(X́)β̂ + T(X́)A−1(y − Hβ̂), (4)

c(X́, X́) = c(X́, X́) − T(X́)A−1T(X́)T

+ (h(X́)T − T(X́)A−1h(X)T )(h(X)A−1h(X)T )−1

× (h(X́)T − T(X́)A−1h(X)T )T , (5)

and Σ̂ = (n − q − k − 1)−1(Y − HB̂)TA−1(Y − HB̂), with B̂ the q × k matrix such

that vec(B̂) = β̂ , and Y the q × k matrix such that vec(Y) = y . This posterior is still

conditional on roughness parameters Φ , which cannot be analytically integrated out.

This separable model for the prior covariance has been used in a number of applications

(Bhattacharya, 2007, Rougier, 2007, Kennedy et al., 2008, Rougier et al., 2009). However,

it has some restrictive implications. First, there is only one spatial correlation function in

the model, applicable to every output. That says that we expect the residual process of

every output to have the same smoothness properties. Second, it can be shown (O’Hagan,

1998) that separability in the covariance is equivalent to a kind of Markov property. If we

partition the outputs as η(x)T = [η1(x)T ,η2(x)T ] , then, given regression coefficients β ,

cov[η1(x
′),η2(x)|η1(x)] = cov[η2(x

′),η1(x)|η2(x)] = 0, (6)

for any x,x′ ∈ X . This property has the following interpretation. Suppose that we wish

to predict η1(x
′) and, for some other point x , we have already observed η1(x). Then

observing η2(x) gives us no further information. Inspection of equations (4)-(5) shows that

the conditional marginal posterior for a given output is a function of only the data arising

from that output, so p(ηj(.)|y,Φ) = p(ηj(.)|yj,Φ) ∀j . This means there is no sharing of

information across the outputs.

These implications show that separability in the covariance is a strong assumption to

make about the computer model output. In section 3 we demonstrate an example where this

assumption does not hold and the limitations of a separable covariance become apparent.

2.5 Nonseparable covariance functions

If the assumption of separability in the covariance function is too restrictive, then a nonsep-

arable alternative may be sought. A nonseparable covariance function can have a different

spatial correlation function for each output, and does not possess the Markov property

(6). This means that the marginal posterior for an output is a function of the data from

all of the outputs, so, unlike with a separable covariance, there is sharing of information

across outputs. Nonseparable covariance structures are usually constructed from a num-

ber of univariate covariance functions. In this section we consider two approaches to this

construction: convolution methods, and coregionalization models.

With a nonseparable covariance function there is no conjugate prior for the between-

outputs covariance matrix Σ , so Σ cannot be analytically integrated out of the posterior

process (2). This means that we must either integrate over Σ numerically by sampling from

its posterior, or plug an estimate of Σ into the posterior and treat it as if it were known.
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Convolution methods

A GP can be constructed by taking the convolution of a Gaussian white noise process with

an arbitrary smoothing kernel over X . Higdon (2002) notes that a k -output GP can be

constructed by, for each output j , choosing a smoothing kernel κj(x) and convolving it

with a common ‘latent’ Gaussian white noise process w(x). Using this idea in the model

(1), we construct the residual GP z(.) as

zi(x) =

∫

X

κi(u− x)w(u) du i = 1, ..., k. (7)

If W (x) has zero mean and unit variance, then z(.) has covariance function with elements

Cij(x,x′) =

∫

X

κi(u− x)κj(u− x′) du. (8)

If the smoothing kernels are squared-exponential functions then the spatial correlation func-

tion of z(.) will also be a squared-exponential.

The dependencies between the outputs are introduced by their shared dependence on

latent process W (x). Other authors have extended this approach, defining more complex

covariance functions by summing multiple convolutions (Boyle and Frean, 2005, Alvarez

and Lawrence, 2009). This can allow, for example, outputs to posses both shared and inde-

pendent features by convolving with a mixture of shared and independent latent processes.

Majumdar and Gelfand (2007) define a covariance function for each output directly and take

pairwise convolutions to construct the cross-covariance functions. Their resulting model is

similar to the convolved latent process models.

A feature of convolution methods is that they focus on constructing (sometimes highly

complex) covariance functions for individual outputs, letting the convolution framework

automatically define valid cross-covariance functions. There is less emphasis on accurate

modeling of the between-output correlations. The covariance defined by equation (8) is

fully determined by the parameters in the smoothing kernels and the individual output

variances. Since each of the smoothing kernels relates to an individual output, there are no

free parameters within the model for directly controlling the between-output correlations.

If two outputs have identical smoothing kernels (and so have identical spatial correlation

functions), then the correlation between those outputs is forced to be equal to one.

To enable more freedom in the specification of the between-output correlations, we need

more parameters in the model (7). Higdon (2002) partitions the input space X and re-

stricts the domain over which outputs share their dependence on the underlying white noise

process. However, the relationship between the partitioning and the resulting covariance

structure is not simple and it is not clear how one should choose the partition in order to

define a particular cross-correlation function.
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The convolution emulator

We propose an alternative method for introducing additional parameters into the model,

using multiple dependent white noise processes. The elements of z(.) are constructed as

zi(x) =

∫

X

κi(u − x)wi(u) du, i = 1, ..., k,

where w(x)T = (w1(x), ..., wk(x)) is a multivariate white noise process with E[w(x)] = 0

and cov[wi(x), wj(x
′)] = pijδ(x − x′), where pij are the elements of a correlation matrix

P. The covariance function of z(.) is C(., .), with elements

Cij(x,x′) = pij

∫

X

κi(u− x + x′)κj(u) du.

We use squared-exponential smoothing kernels

κi(x) = σi

[

(

4

π

)p p
∏

ℓ=1

φ
(ℓ)
i

]
1
4

exp{−2xT Φix} i = 1, ..., k,

where Φi is the diagonal matrix diag(φ
(1)
i , ..., φ

(p)
i ), giving the covariance function

Cij(x,x′) = Σ̃ijρij exp{−2(x − x′)T Φi(Φi + Φj)
−1Φj(x − x′)},

where Σ̃ij = σiσjpij and

ρij = 2
p

2

p
∏

ℓ=1

[

(φ
(ℓ)
i φ

(ℓ)
j )

1
4 (φ

(ℓ)
i + φ

(ℓ)
j )−

1
2

]

. (9)

The direct covariance function for output i is Cii(x,x′) = σ2
i exp{−(x − x′)T Φi(x − x′)}

with roughness parameters Φ = {Φ1, ...,Φk}. We refer to the emulator that uses this model

as CONV.

Using a multivariate white noise process in CONV we have introduced an additional
1
2k(k + 1) parameters: the elements of correlation matrix P. For outputs i and j , ρij

represents the maximum absolute value of the between-outputs correlation allowed by the

choice of smoothing kernels and their parameters. The parameter pij gives the required

flexibility by scaling down the maximum value and giving it the appropriate sign. The

complete set of covariance hyperparameters is (σ2,P,Φ), where σ2 = (σ2
1 , ..., σ

2
k)T and

Φ = {Φ1, ...,Φk}. For convenience, we parameterize instead by θ = (Σ̃,Φ), with Σ̃ =

{Σ̃ij} as defined above equation (9).

The linear model of coregionalization

The linear model of coregionalization (LMC) was developed in the field of geostatistics as

a tool to model multivariate spatial processes (Journel and Huijbregts, 1978, Wackernagel,

1995, Goulard and Voltz, 1992, Gelfand et al., 2004). The idea behind the LMC is to con-

struct output processes z(.) as linear combinations of a number of building-block processes.
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The number of building-block processes is unrestricted, but we use an LMC with k building

blocks, written as

z(.) = Ru(.). (10)

The k × k matrix R is full-rank, and u(.) is a vector of k independent zero mean, unit

variance GPs with spatial correlation functions κ1(., .), ..., κk(., .) with hyperparameters Φ̃.

The associated covariance function for z(.) is

C(x,x′) = R[diag{κ1(., .), ..., κk(., .)}]RT (11)

=

k
∑

j=1

Σjκj(., .),

where, for j = 1, ..., k , Σj = rjrj
T , with rj the j th column of R.

The set {κ1(., .), ...., κk(., .)} forms a basis of correlation functions, and the covariance

function for a single output or a pair of outputs is a weighted sum of these basis functions.

The weights are determined by the elements of the coregionalization matrices {Σj : j =

1, ..., k}. With this covariance function, the covariance matrices in the posterior process (2)

become sums of Kronecker products of the coregionalization matrices and basis correlation

matrices:

V =

k
∑

j=1

Σj ⊗ κj(X,X),

F(X́) =

k
∑

j=1

Σj ⊗ κj(X, X́).

An advantage of the LMC is that, by composing the overall correlation function as combi-

nation of basis functions, we can model variation occurring on different scales.

The LMC emulator

We use the LMC for the residual process z(.) in the emulator model (1). The between-

outputs covariance of the emulator is Σ = RRT . Since matrix square-roots are not unique,

Σ and R are not one-to-one, and different choices of R can lead to multiple models with the

same Σ . A natural way to simplify the model further is to parameterize by Σ rather than

R and to specify a particular square-root decomposition to obtain R. Gelfand et al. (2004)

use the lower-triangular Cholesky decomposition for its computational ease. We argue that,

while we may not necessarily gain additional richness through other decompositions (since

the number of free parameters to be specified remains the same), other decompositions do

produce fundamentally different models. Hence the Cholesky decomposition should not

necessarily be used simply because it is computationally convenient.

Under the Cholesky decomposition, R is lower triangular so the residual process for the
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ith output is

zi(.) =

i
∑

j=1

rijui(.),

where rij is the i, j th entry of R. We can rewrite the elements of equation (10) as

zi(.) =

i−1
∑

j=1

α
(i)
j zj(.) + riiui(.), (12)

for some set of coefficients α
(i)
j . Thus the model has an ordered form with the ith output

residual being constructed as a linear combination of the first i − 1 output residuals plus

an independent Gaussian process. This means that the ordering of the outputs matters. A

consequence of this structure is the following.

Theorem 2.1 Let z(.), u(.) and R be defined as in equation (10), with R lower tri-

angular. Suppose that (a) there exists 1 < j < k such that the j th row of R has

non-zero entries to the left of the diagonal, and (b) that set of basis correlation functions

{κ1(., .), ..., κj (., .)} is such that for some x,x′ ∈ X with x 6= x′ , and some u, v ∈ {1, ..., j},

κu(x,x′) 6= κv(x,x′). Then there exists i < j such that

cov[ηi(x
′), ηj(x)|ηi(x),β] = 0, (13)

cov[ηj(x
′), ηi(x)|ηj(x),β] 6= 0. (14)

(Proof given in the appendix.)

This result has the following interpretation. Let x′ be any point in X . Suppose that,

for i < j , we wish to predict ηi(x
′), and, for some other x ∈ X , we have observed

η1(x), ..., ηi(x). Equation (13) implies that ηi(x
′) and ηj(x) are conditionally independent

given η1(x), ..., ηi(x), so observing ηj(x) gives no further information. But the argument

is asymmetric: under the conditions of the theorem, equation (14) implies that ηj(x
′) and

ηi(x) are not conditionally independent given ηj(x), so if we wish to predict ηj(x
′), then

ηi(x) is informative, even if we have observed ηj(x).

If we can establish a priori some natural ordering of the outputs then the Cholesky

decomposition may be appropriate. For example, Kennedy and O’Hagan (2000) use a

special case of (12) (an autoregressive model) to emulate outputs are that are the results of a

computer code run at different levels of sophistication. However, for many computer models

there is no obvious hierarchy of dependence in the outputs. It would not be appropriate to

impose an arbitrary asymmetry on them, so decompositions of Σ other than the Cholesky

should be considered for the LMC.

We propose the eigendecomposition of Σ as a suitable alternative. The eigendecompo-

sition is R = Λ
√

DΛT , where Λ is the orthogonal matrix of normalized eigenvectors of

Σ and
√

D is the diagonal matrix of the square roots of the eigenvalues of Σ . With this

decomposition R is symmetric and permuting any two rows and the corresponding columns

of Σ will have only the effect of permuting the same rows and columns of R. Hence the

labeling of the outputs will have no impact on the structure of the model. We refer to the
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emulator that uses the model (1) with the residual process z(.) defined by equation (10),

with symmetric R, as LMC.

Note the difference between the parameterizations of the LMC and the convolution

model. Recall that we cannot arbitrarily specify a set of spatial correlation functions and a

between-outputs covariance matrix. In CONV we have parameters θ = (Φ, Σ̃), where the

Φ directly control the spatial correlation functions but Σ̃ gives only limited control over the

between-outputs covariance matrix. Conversely, in LMC we have parameters θ = (Φ̃,Σ),

where Σ is the between-outputs covariance matrix, but Φ̃ gives only limited control over

the spatial correlation functions.

3 Case studies

We consider two case studies: a computer model used by engineers to study a mechanical

structure, and a simple climate model. We implement the SEP, CONV and LMC emula-

tors, and for comparison, we emulate the various outputs independently using univariate

emulators. We refer to this independent outputs approach as IND.

In IND, SEP and CONV we use squared-exponential correlation functions and in LMC

we use squared-exponential basis functions. We estimate the relevant hyperparameters at

their maximum likelihood values. Recall that in the case of the separable covariance, use of

the conjugate prior allows the between-outputs covariance Σ to be integrated out, giving

p(η(.)|Φ,y), the posterior process conditional only on the correlation function hyperpa-

rameters. We refer to this as an integrated emulator. We can obtain a similar integrated

posterior for each of the independent univariate emulators in the IND method. This an-

alytic integration is not possible in either of the nonseparable approaches, so instead we

estimate all of the covariance function hyperparameters θ = (Σ,Φ) and predict using the

posterior p(η(.)|θ,y). We refer to this as a conditional emulator. This raises a question: to

make a fair comparison of the emulators, should we use integrated or conditional versions

of IND and SEP?

An integrated emulator should, according to theory, give a better representation of

posterior beliefs than the conditional posterior since it takes into account the uncertainty

in Σ . But that is only true if the modeling assumptions we have made (for example the

assumption of separability in the covariance) are valid. If some of the modeling assumptions

are not well fulfilled then it is possible that the conditional emulator is at least as good as

the integrated emulator.

For thoroughness, in both case studies we fit the integrated and the conditional versions

of IND and SEP. However, we find that in all our diagnostics there is little difference

between the two versions, and the conclusions we draw about the relative merits of the

emulators are the same no matter which version we use. To simplify presentation of the

comparisons, we give results from just the conditional versions of IND and SEP.

In each case study we run the computer model on a Latin hypercube design spanning the

input space to obtain n training data. For evaluating the emulators we obtain ń validation

data by running the computer model on a second, independently generated, Latin hypercube

design. We use the various emulators to predict the model outputs at each member of the

validation design and compare the predictions with the true values, using the following

12



diagnostics:

• The root-mean-squared error (RMSE), defined as the square root of the average

squared prediction error. We calculate the RMSE for each output individually, so

it indicates the output-marginal prediction accuracy of the emulators. To compare

the magnitude of the prediction errors between outputs, we standardize the RMSE

for each output by dividing by the range of the corresponding validation data.

• Dα , the proportion of 100α% credible intervals that contain the true validation point.

A good emulator will have values of Dα close to α , so we plot Dα against α ∈ [0, 1]

and look for deviation from the straight line through the origin with unit slope.

• DMD
i , the squared Mahanalobis distance of validation point i , which, according to

(2), should be distributed χ2
kń . We compare the observed values of DMD

i to the chi-

squared reference distribution; a discrepancy indicates misspecification of the between-

outputs covariance structure.

3.1 Case Study 1: A finite element model of an aircraft

The aircraft model of the Garteur benchmark problem was designed by the Garteur Action

Group to evaluate ground vibration test techniques (Balmes and Wright, 1997). A finite

element (FE) model was created as a theoretical representation of the aircraft structure.

The FE model has parameters determining the physical properties of the structure, some

of which are uncertain. The output of the FE model consists of several pairs of modal

parameters: a modal mass parameter m̂i and a modal stiffness parameter k̂i . The subscript

i indexes the modal frequencies of vibration of the aircraft. A typical finite element analysis

considers a subset of the modal parameters.

For this case study, we choose p = 5 of the uncertain FE model parameters to serve as

the inputs to the model, which we denote xT = (x1, ..., x5). The remaining parameters are

held fixed at values supplied by the model authors. We consider the first three pairs of modal

parameters, giving a total of k = 6 outputs denoted yT = (y1, ..., y6) = (m̂1, k̂1, ..., m̂3, k̂3).

We use n = 50 runs of the FE model as training data, and a further 50 runs as validation

data.

Figure 1a compares the standardized RMSEs of the emulator predictions. IND and LMC

have the best output-marginal prediction accuracy, followed by CONV then SEP. Box plots

of the observed squared Mahanalobis distances DMD
i (Figure 1b) show that the covariances

of the emulators are generally well validated, although SEP is a little underconfident.

IND SEP CONV LMC

4.24 8.3 13.3 7.97

Table 1: Case study 1: The RMSE for the FRF (ω∗) validation data. The values have been
multiplied by 106

These diagnostics suggest that the covariance structure of SEP is least suitable for this

application, and that prediction is better if the outputs have different spatial correlation

functions. However, there is little evidence to suggest that the nonseparable covariance
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Figure 3: Case study 1: Dα plots for predictions of FRF (ω∗).

structures (in CONV and LMC ) offer a significant advantage over the independent-outputs

approach. If we are interested only in marginal predictions of the individual outputs then we

should use the IND approach. The DMD
i diagnostic suggests that IND also gives reasonable

joint output predictions. A reason for this is that the estimates of the covariance matrix

Σ obtained in the multivariate emulators give that there is mostly low correlation between

the outputs, with only two pairs of outputs having a correlation greater than 0.5 (see

Figure 2). Ignoring these between-output correlations has little negative impact on the

joint distribution of all six outputs.

The joint distribution of output predictions may be important when predicting a func-

tion that combines correlated outputs. For FE models, an engineer may be interested in

using the outputs to compute the frequency response function (FRF) of the mechanical

structure (Moens and Vandepitte, 2004). In an undamped structure the FRF as a function

of frequency ω is

FRF (ω) =

nm
∑

i=1

1

k̂i − ω2m̂i

, ω 6=
√

k̂i/m̂i ∀i = 1, ..., nm. (15)

We predict the FRF at a fixed frequency ω∗ . The FRF is most heavily influenced by the

outputs k̂i and m̂i at frequencies that are close to

√

k̂i/m̂i . In order to show the effect of

correlation between outputs on the FRF, we choose ω∗ = 200 Hz, a frequency at which the

FRF is heavily influenced by two highly correlated outputs, k̂3 and m̂3 (outputs 5 and 6).

We could, in theory, analytically calculate the predictive distribution of FRF (ω∗) (as

a function of the FE model inputs x) using equation (15) and the joint posterior of the
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FE model outputs y from any one of the emulators. This is infeasible, though, due to

the non-linearity of (15). Instead, we sample from the joint posterior of y and substitute

the sampled values into (15) to obtain a sample from the posterior of FRF (ω∗). Since

FRF (ω∗) goes to infinity as ω∗ approaches

√

k̂i/m̂i for each i ∈ {1, ..., nm}, we expect

the predictive distribution at some validation points to be strongly skewed, so we use the

sample median for point predictions.

We predict FRF (ω∗) at the 50 validation points using each of the FE model emulators.

The RMSEs (Table 1) show that the relative accuracies of the FRF (ω∗) predictions broadly

correspond to the relative accuracies of the predictions of FE model outputs 5 and 6, with

IND having the greatest accuracy. However, plots of the Dα diagnostic (Figure 6) show that

IND has consistently underconfident predictions, which is caused by the false assumption

of independence between the outputs. The SEP emulator has overconfident predictions,

due to the misspecification of the spatial correlation functions. For CONV and LMC the

Dα diagnostics are close to the reference line, suggesting that a nonseparable covariance

structures is required to adequately model the joint distribution of outputs 5 and 6.

3.2 Case Study 2: A simple climate model

Urban and Keller (2010) developed a simple Earth system model (referred to here as the

Simple Climate Model or SCM) to obtain predictions of past and future values of a variety

of climate variables. We consider emulating the output values corresponding to year 2000

of three variables: atmospheric CO2 concentration (CO2 ), ocean heat uptake (OH ), and

global surface temperature anomaly (T ). We select five model parameters as the variable

inputs. We use n = 55 runs of the SCM as training data, and we have available a further

90 runs as validation data.

Figure 4a compares the RMSEs of the emulator predictions. The relative output-

marginal prediction accuracies of the emulators are similar to those in case study 1, with

IND and LMC performing the best, followed by CONV then SEP. As before, prediction

accuracy is better when the outputs have different spatial correlation functions. The box

plots of the observed DMD
i in Figure 4b show that all emulators have overconfident joint

output predictions, but the problem is worst in IND. The reason for this is that there is

high correlation between all three outputs, according to the estimates from the multivariate

emulators shown in Figure 5.

As in Case Study 1, there is not a strong case for using a nonseparable covariance over

the independent outputs approach if we are interested only in predicting individual outputs.

But again there may be interest in a function of multiple outputs. Jones et al. (2006) model

the quantity gross primary productivity (GPP ) as a function of a number of parameters

which include the SCM output variables CO2 and T :

GPP = GPPmax

(

CO2

CO2 − C0.5

)(

1 − ΓToptT +
Γ

2
T 2

)

.

We consider predicting GPP using fixed values of the additional parameters from the

ranges suggested by Jones et al. (2006) (GPPmax = 1, C0.5 = 466 ppm, Γ = −0.024 K−2

and Topt = 3.0 K). We use the same sampling scheme as in Case Study 1 to obtain the
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IND SEP CONV LMC

3.30 6.27 4.85 3.00

Table 2: Case study 2: The RMSE for the GPP validation data. The values have been
multiplied by 103
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Figure 6: Case study 2: Dα plots for the predictions of GPP .

predictions, using the sample median for point predictions. As with the raw CO2 and T

outputs, there is little difference between IND and LMC in terms of prediction accuracy

(table 2), and both have greater accuracy than SEP and CONV. However, the plots of the

Dα diagnostics in Figure 6 show that the LMC posterior has better correspondence to the

validation data than that of IND. This is because the IND method does not account for

correlation between CO2 and T , so predictions are overconfident. Although the correlation

is modeled in SEP and CONV, the inflation in uncertainty that the correlation induces

in the GPP predictions is not enough to compensate for the original overconfidence in

the raw output predictions from these methods. The LMC emulator had the most accurate

original predictions of the raw outputs which, combined with its modeling of between-output

correlation, lead to it having the best predictive distribution for GPP .

4 Discussion

In this paper we have developed two methods of constructing emulators with nonseparable

covariance structures, proposing modifications to convolution and coregionalization methods

to make them suitable for use in multivariate emulation. Our convolution-based emulator

has additional hyperparameters to control the between-output correlations, and our LMC-
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based emulator uses the eigendecompostion of the covariance matrix to make it invariant

under reordering of the outputs.

We have compared the covariance structures in two case studies, and found that our

nonseparable models offer some advantages. The advantage over the separable covariance

was clear: in both case studies we found that restricting the model to having just one spatial

correlation function for all the outputs, as in the separable covariance, resulted in poor

predictions of some or all outputs. The advantage over the independent-outputs approach

was less clear. We were able to obtain similarly good, or better, marginal predictions

of individual outputs from the independent emulators as we were from emulators with

either of the nonseparable covariances. However, when predicting scalar-valued functions of

multiple outputs we found that ignoring the between-output correlations resulted in either

underconfident or overconfident predictions.

A scalar-valued function of multiple outputs could be emulated directly with a univariate

emulator, without the interim step of emulating the raw computer model outputs. However,

the functions in our case studies contain singularities, which would make direct emulation

problematic. Also, the functions contain parameters other than just the computer model

output, so a new univariate emulator would have to be built every time these parameters

are changed. The advantage of emulating the raw outputs first is that one can the use the

raw output emulator to obtain predictions of the function with any configuration of the

other parameters.

Comparing the two nonseparable covariances, we found that the LMC approach outper-

formed the convolution approach in both case studies. We speculate that this may be due to

the spatial correlation functions in the models. In the LMC, a consequence of taking linear

combinations of a number of independent Gaussian processes is that the spatial correlation

function for an individual output is a weighted sum of several basis correlation functions.

This allows the modeling of output variation that occurs on several different scales. In the

convolution approach we directly assign a single spatial correlation function to each output

via the choice of smoothing kernel. We used squared-exponential correlation functions, thus

restricting the outputs to each have a single ‘range’ of correlation. It would be interesting

to investigate whether we can improve the convolution approach through use of alternative

correlation functions.

We conclude that, if emulating a multiple output computer model, it would be desirable

to implement a variety of different emulators (independent, separable and nonseparable),

perform diagnostics, and select that which is most fit for purpose. If the outputs have

different correlation lengths, and there is interest in joint predictions of multiple outputs,

then the nonseparable emulators may be best. However, nonseparable emulators may not

be practicable in some very large dimension models: we may simply not have enough

computing power to invert the full nonseparable covariance matrix. In that case we must

choose between the independent and the separable approaches. The former is likely to be

best if interest is confined to marginal output prediction, while the latter may be necessary

if joint predictions are required.
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A Proof of theorem 2.1

In the following proof, for any vectors of variables X and Y of lengths nX and nY respec-

tively, we denote the nX × nY matrix cov[X,Y ] by 〈X,Y 〉 .

Proof: Consider the truncated vector of outputs [η1(.)
T , ηj(.)

T ] , where η1(.) represents

the first j − 1 elements of η(.). Truncate and partition z(.), u(.) and R accordingly as

z(.)T = [z1(.)
T , zj(.)

T ] , u(.)T = [u1(.)
T , uj(.)

T ] and

R =

(

T1 0

λT tj.

)

.

Here, T1 is a lower triangular (j − 1) × (j − 1) matrix, λ is a (j − 1) × 1 vector with

non-zero elements, and tj is a scalar. Then z1(.) = T1u1(.) and zj(.) = λTu1(.) + tjuj(.).

Given x 6= x′ ∈ X , let C = 〈u1(x
′),u1(x)〉 and cj = 〈uj(x

′), uj(x)〉 . Since the elements of

u1(.) are independent processes, C is diagonal, and by condition (b) in the statement of

the theorem the diagonal elements of C are not all equal.

Proof of equation (13): We have

〈η1(x
′), ηj(x)|η1(x), β〉 = 〈z1(x

′), zj(x)|z1(x)〉. (16)

Form the vector [z1(x
′)T , zj(x)T , z1(x)T ] . This has a multivariate normal distribution, so

by the usual formula for conditioning in the multivariate normal distribution,

〈z1(x
′), zj(x)|z1(x)〉 = 〈z1(x

′), zj(x)〉 (17)

− 〈z1(x
′), z1(x)〉〈z1(x), z1(x)〉−1〈z1(x), zj(x)〉.

Then, noting that u1(x) and uj(x
′) are independent for all x,x′ ∈ X ,

〈z1(x
′), zj(x)〉 = 〈T1u1(x

′),λT u1(x)〉 = T1Cλ,

〈z1(x
′), z1(x)〉 = 〈T1u1(x

′),T1u1(x)〉 = T1CTT
1 ,

〈z1(x), z1(x)〉 = 〈T1u1(x),T1u1(x)〉 = T1T
T
1 ,

〈z1(x), zj(x)〉 = 〈T1u1(x),λT u1(x)〉 = T1λ.

Substituting these expressions into equations (16)-(17), and noting that T1 is full rank so

it is invertible, we obtain

〈η1(x
′), ηj(x)|η1(x), β〉 = T1Cλ − T1CTT

1 (T1T
T
1 )−1T1λ = 0.
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Proof of equation (14): Using similar arguments,

〈ηj(x
′),η1(x)|ηj(x), β〉 = 〈zj(x

′), z1(x)〉
− 〈zj(x

′), zj(x)〉〈zj(x), zj(x)〉−1〈zj(x), z1(x)〉,
= λTCTT

1 − (λTCλ + t2jcj)(λ
T λ + t2j )

−1λTTT
1

=

(

λTC −
λTCλ + t2jcj

λT λ + t2j
λT

)

TT
1 . (18)

We are looking for i ∈ {1, ..., j −1} such that 〈ηj(x
′), ηi(x)|ηj(x), β〉 6= 0, so we suppose

that

〈ηj(x
′),η1(x)|ηj(x), β〉 = 0, (19)

and seek a contradiction. If equation (19) holds, then equation (18) gives

λTC =
λTCλ + t2jcj

λT λ + t2j
λT , (20)

(using the fact that T1 is full rank). Since λ has no zero elements, equation (20) implies

that C is a scalar multiple of the identity matrix, contradicting the fact that the diagonal

elements of C are not all equal.
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